Gaussian Quantum Steering of Two Bosonic Modes in a Squeezed Thermal Environment

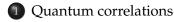
Tatiana Mihaescu, Aurelian Isar

Department of Theoretical Physics Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH),

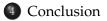
Faculty of Physics, University of Bucharest

3-7 July, Dubna 2017

CONTENTS



- 2 Gaussian Quantum Steering
- Gaussian Quantum Steering Dynamics in a Squeezed Thermal Environment



• **Definition (Separability).** The two-mode quantum system on $H = H_A \otimes H_B$ characterized by the state ρ is separable if and only if it can be written as:

$$ho = \sum_k p_k \
ho_k^{(A)} \otimes
ho_k^{(B)},$$

where $p_k \ge 0$ are the probabilities with $\sum_k p_k = 1$ and $\rho_k^{(A)}$, $\rho_k^{(B)}$ belong to H_A si H_B , respectively.

• **Definition (Separability).** The two-mode quantum system on $H = H_A \otimes H_B$ characterized by the state ρ is separable if and only if it can be written as:

$$ho = \sum_k p_k \
ho_k^{(A)} \otimes
ho_k^{(B)},$$

where $p_k \ge 0$ are the probabilities with $\sum_k p_k = 1$ and $\rho_k^{(A)}$, $\rho_k^{(B)}$ belong to H_A si H_B , respectively.

• Entanglement: failure of quantum state separability.

Operational definition: Allow Alice and Bob the ability to measure a quorum of local observables, so that they can reconstruct the state *ρ* by tomography.

¹R. F. Werner, Phys. Rev. A **40**, 4277 (1989).

- Operational definition: Allow Alice and Bob the ability to measure a quorum of local observables, so that they can reconstruct the state *ρ* by tomography.
- ► Restrict to projective measurements: $\hat{A} \in \mathcal{D}_{\alpha}$, $\hat{B} \in \mathcal{D}_{\beta}$ observables. $\lambda(\hat{A})$, $\lambda(\hat{B})$ set of eigenvalues *a*, *b* of \hat{A} and \hat{B} respectively.

 $P(a, b|\hat{A}, \hat{B}; \rho) = Tr[\rho(\hat{\Pi}_a^A \otimes \hat{\Pi}_b^B)],$

where $\hat{\Pi}_{a}^{A}$ is the projector satisfying $\hat{A}\hat{\Pi}_{a}^{A} = a\hat{\Pi}_{a}^{A}$.

¹R. F. Werner, Phys. Rev. A **40**, 4277 (1989).

- Operational definition: Allow Alice and Bob the ability to measure a quorum of local observables, so that they can reconstruct the state *ρ* by tomography.
- ► Restrict to projective measurements: $\hat{A} \in \mathcal{D}_{\alpha}$, $\hat{B} \in \mathcal{D}_{\beta}$ observables. $\lambda(\hat{A})$, $\lambda(\hat{B})$ set of eigenvalues *a*, *b* of \hat{A} and \hat{B} respectively.

 $P(a, b|\hat{A}, \hat{B}; \rho) = Tr[\rho(\hat{\Pi}_a^A \otimes \hat{\Pi}_b^B)],$

where $\hat{\Pi}_{a}^{A}$ is the projector satisfying $\hat{A}\hat{\Pi}_{a}^{A} = a\hat{\Pi}_{a}^{A}$.

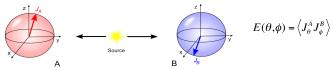
► Separability:

$$P(a,b|\hat{A},\hat{B};\rho) = \sum_{k} p_{k} P(a|\hat{A};\rho_{k}^{A}) P(b|\hat{B};\rho_{k}^{B}).$$

¹R. F. Werner, Phys. Rev. A **40**, 4277 (1989).

Bell Nonlocality

Consider experiment to measure spin correlation: spin 1/2 system



IF we assign local hidden variables to each spin:

CHSH-Bell inequality

$$S = E(\theta, \phi) - E(\theta', \phi) + E(\theta, \phi') + E(\theta', \phi') \leq 2$$

Quantum Mechanics predicts a violation of Bell's inequality!

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \implies S = 2\sqrt{2}$$

(Tsirelson) maximum QM value

Bell Nonlocality

► Local Hidden Variable model (LHV) $\hat{A} \in \mathcal{M}_{\alpha}, \hat{B} \in \mathcal{M}_{\beta}$ - measurements $a \in \lambda(\hat{A}), b \in \lambda(\hat{B})$.

$$P(a,b|\hat{A},\hat{B};\rho) = \sum_{k} p_{k} \mathcal{P}(a|\hat{A};k) \mathcal{P}(b|\hat{B};k),$$

where $\mathcal{P}(a|\hat{A};k)$ denote some positive, normalized probability distributions, involving the LHV *k*.

Bell Nonlocality

► Local Hidden Variable model (LHV) $\hat{A} \in \mathcal{M}_{\alpha}, \hat{B} \in \mathcal{M}_{\beta}$ - measurements $a \in \lambda(\hat{A}), b \in \lambda(\hat{B})$.

$$P(a,b|\hat{A},\hat{B};\rho) = \sum_{k} p_k \mathcal{P}(a|\hat{A};k) \mathcal{P}(b|\hat{B};k),$$

where $\mathcal{P}(a|\hat{A};k)$ denote some positive, normalized probability distributions, involving the LHV *k*.

 Bell Nonlocality: Falure of LHV model, i.e., hidden variable separability.

THE CONCEPT OF STEERING

 Consider a general nonfactorizable pure state of two systems held by two parties (say Alice and Bob):

$$|\Psi\rangle = \sum_{n=1}^{\infty} c_n |\psi_n\rangle |u_n\rangle = \sum_{n=1}^{\infty} c_n |\phi_n\rangle |v_n\rangle,$$

where $\{|u_n\rangle\}$ and $\{|v_n\rangle\}$ two orthonormal bases for Alice's system.

THE CONCEPT OF STEERING

 Consider a general nonfactorizable pure state of two systems held by two parties (say Alice and Bob):

$$|\Psi
angle = \sum_{n=1}^{\infty} c_n |\psi_n
angle |u_n
angle = \sum_{n=1}^{\infty} c_n |\phi_n
angle |v_n
angle,$$

where $\{|u_n\rangle\}$ and $\{|v_n\rangle\}$ two orthonormal bases for Alice's system.

► ⇒ Choosing to measure in the $\{|u_n\rangle\}$ ($\{|v_n\rangle\}$) basis, Alice projects Bob's system into one of the states $\{|\psi_n\rangle\}$ ($\{|\phi_n\rangle\}$).

• It is about whether Alice, by her choice of measurement \hat{A} , can collapse Bob's system into different types of states in the different ensembles $\{E^A : \hat{A} \in \mathcal{M}_{\alpha}\}$ into which she can steer Bob's state.

$$E^A \equiv \{ \tilde{
ho}^A_a : a \in \lambda(\hat{A}) \}, \quad \tilde{
ho}^A_a \equiv Tr_{\alpha}[
ho(\Pi^A_a \otimes I)],$$

where $\tilde{\rho}_a^A \in \mathcal{D}_\beta$ is Bob's state conditioned on Alice measuring \hat{A} with result *a*.

²H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

• It is about whether Alice, by her choice of measurement \hat{A} , can collapse Bob's system into different types of states in the different ensembles $\{E^A : \hat{A} \in \mathcal{M}_{\alpha}\}$ into which she can steer Bob's state.

$$E^A \equiv \{ \tilde{
ho}^A_a : a \in \lambda(\hat{A}) \}, \quad \tilde{
ho}^A_a \equiv Tr_{\alpha}[
ho(\Pi^A_a \otimes I)],$$

where $\tilde{\rho}_a^A \in \mathcal{D}_\beta$ is Bob's state conditioned on Alice measuring \hat{A} with result *a*.

► **Operationaly**: Can Alice, with classical communication, convince Bob that they share an entangled state under the fact that Bob doesn't trust Alice?¹

²H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

• If the correlations between Bob's measurement results and the results Alice reports *cannot* be explined by a *local hidden state* (LHS) ρ_k^B for Bob (if there is no such a prior ensemble $F = \{p_k \rho_k^B\}$ of LHS), then Bob will be convinced that the state is entangled.

³H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

- If the correlations between Bob's measurement results and the results Alice reports *cannot* be explined by a *local hidden state* (LHS) ρ_k^B for Bob (if there is no such a prior ensemble $F = \{p_k \rho_k^B\}$ of LHS), then Bob will be convinced that the state is entangled.
- ▶ **Definition (Steering).**²: Alice's measurement strategy on ρ exhibits steering *iff* it is *not* the case that for all $a \in \lambda(A)$ and $b \in \lambda(B)$

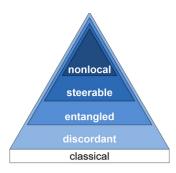
$$P(a, b|A, B; \rho) = \sum_{k} p_{k} \mathcal{P}(a|\hat{A}; k) P(b|B; \rho_{k}^{B}),$$

where $F = \{p_k \rho_k^B\}$ some prior ensemble of LHS with $\rho = \sum_k p_k \rho_k^B$.

³H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

HIERARCHY OF NONLOCALITY

Generalised EPR paradox: for different measurements Alice appears to steer Bobs state from distant site.



Hierarchy of nonlocality:

- Bell nonlocality: Failure of Local Hidden Variable (LHV) model
- EPR steering nonlocality: Failure of Hybrid LHV-LQS model
- Entanglement: Failure of Local Quantum State (LQS) model

GAUSSIAN STATES

► A general (multimode) bipartite Gaussian state *W* is defined by its covariance matrix (CM)³:

$$V_{lphaeta} = egin{pmatrix} V_{lpha} & C \ C^T & V_{eta} \end{pmatrix}, \quad \mathrm{iff} \quad V_{lphaeta} + i\Sigma_{lphaeta} \geq 0$$

where $\Sigma_{\alpha\beta} = \Sigma_{\alpha} \oplus \Sigma_{\beta}$ is a smatrix.

⁴G. Adesso and A. Datta, Phys. Rev. Lett. **105**, 030501 (2010).

GAUSSIAN STATES

► A general (multimode) bipartite Gaussian state *W* is defined by its covariance matrix (CM)³:

$$V_{lphaeta} = egin{pmatrix} V_{lpha} & C \ C^T & V_{eta} \end{pmatrix}, \quad \mathrm{iff} \quad V_{lphaeta} + i\Sigma_{lphaeta} \geq 0$$

where $\Sigma_{\alpha\beta} = \Sigma_{\alpha} \oplus \Sigma_{\beta}$ is a smatrix.

 Consider that Alice can only make Gaussian measurements *A* described by a Gaussian positive operator with a CM satisfying *T^A* + *i*Σ_α ≥ 0

⁴G. Adesso and A. Datta, Phys. Rev. Lett. **105**, 030501 (2010).

GAUSSIAN STATES

► A general (multimode) bipartite Gaussian state W is defined by its covariance matrix (CM)³:

$$V_{lphaeta} = egin{pmatrix} V_{lpha} & C \ C^T & V_{eta} \end{pmatrix}, \quad \mathrm{iff} \quad V_{lphaeta} + i\Sigma_{lphaeta} \geq 0$$

where $\Sigma_{\alpha\beta} = \Sigma_{\alpha} \oplus \Sigma_{\beta}$ is a smatrix.

- Consider that Alice can only make Gaussian measurements A described by a Gaussian positive operator with a CM satisfying T^A + iΣ_α ≥ 0
- ► After such measurement Bob's conditioned state \(\rho_a^A\) is Gaussian with a CM

$$V^A_\beta = V_\beta - C(T^A + V_\alpha)^{-1}C^T$$

⁴G. Adesso and A. Datta, Phys. Rev. Lett. **105**, 030501 (2010).

STEERABILITY CONDITIONS AND QUANTIFICATION

► Theorem: The Gaussian state W is not steerable by a Gaussian measurement iff⁴

$$V_{\alpha\beta} + \mathbf{0}_{\alpha} \oplus i\Sigma_{\beta} \ge 0$$

or equivalently⁵

$$A > 0 \quad \text{and} \quad M^{\beta}_{\alpha\beta} + i\Sigma_{\beta} \ge 0,$$

where $M_{V_{\alpha\beta}}^{V_{\beta}} = V_{\beta} - C^T A^{-1} C$ is the Schur complement of V_{α} .

⁶I. R. Lee, S. Ragy, G. Adesso, Phys. Rev. Lett. 114, 060403 (2015)

⁵H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

STEERABILITY CONDITIONS AND QUANTIFICATION

► Theorem: The Gaussian state W is not steerable by a Gaussian measurement iff⁴

$$V_{\alpha\beta} + \mathbf{0}_{\alpha} \oplus i\Sigma_{\beta} \ge 0$$

or equivalently⁵

$$A > 0 \quad \text{and} \quad M^{\beta}_{\alpha\beta} + i\Sigma_{\beta} \ge 0,$$

where $M_{V_{\alpha\beta}}^{V_{\beta}} = V_{\beta} - C^{T}A^{-1}C$ is the Schur complement of V_{α} .

Quantification of steering

$$S^{A \to B}(V_{\alpha\beta}) = \max\{0, -\sum_{\nu_j^{\beta} 1} \ln\{\nu_j^{\beta}\}\},$$
(1)

where $\{\nu_i^{\beta}\}$ are the symplectic eigenvalues of $M_{\alpha\beta}^{\beta}$.

⁵H. M. Wiseman, S. J. Jones, A. C. Doherty, Phys. Rev. Lett. **98**, 140402 (2007)

⁶I. R. Lee, S. Ragy, G. Adesso, Phys. Rev. Lett. 114, 060403 (2015)

THEORY OF OPEN QUANTUM SYSTEMS

The dynamics of the reduced density matrix ρ of the system interacting with an reservoir (bath) in *Markovian* approximation is described by the following master equation:

$$\dot{\rho} = \frac{\Gamma}{2} \Big\{ (N+1)\mathcal{L}[a] + N\mathcal{L}[a^{\dagger}] - M^*\mathcal{D}[a] - M\mathcal{D}[a^{\dagger}] \Big\} \rho,$$

where Γ is overall damping rate, while $N \in R$ and $M \in C$ represent the effective photons number and the squeezing parameter of the bath respectively.

 $\mathcal{L}[O]\rho = 2O\rho O^{\dagger} - O^{\dagger}O\rho - \rho O^{\dagger}O$ and $\mathcal{D}[O]\rho = 2O\rho O - OO\rho - \rho OO$ are the *Lindbladian superoperators*.

This is the axiomatic approach based on Completely Positive and Trace Preserving maps (that incorporates the dissipative and noisy effects due to the environment) \rightarrow Noisy Channel (interaction with a squeezed thermal bath).

⁷V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976); G. Lindblad, Commun. Math. Phys. 48, 119 (1976) Time evolution of the covariance matrix:

$$\gamma(t) = \exp(-\lambda t)\gamma(0) + (1 - \exp(-\lambda t))\gamma(\infty), \text{ and } \gamma(t) = \begin{pmatrix} A & C \\ C^{\mathsf{T}} & B \end{pmatrix},$$

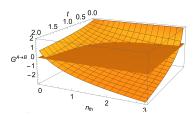
where *A*, *B*, and *C* are 2×2 matrices, $\gamma(\infty)$ is the covariance matrix of the most general Gaussian reservoir:

$$\gamma(\infty) = \begin{pmatrix} \frac{1}{2}N + \Re[M] & \Im[M] & 0 & 0\\ \Im[M] & \frac{1}{2} + N - \Re[M] & 0 & 0\\ 0 & 0 & \frac{1}{2} + N + \Re[M] & \Im[M]\\ 0 & 0 & \Im[M] & \frac{1}{2} + N - \Re[M] \end{pmatrix},$$
(2)

$$N = n_{th}(\cosh[R]^2 + \sinh[R]^2) + \sinh[R]^2$$

$$M = -\cosh[R]\sinh[R]\exp i\varphi(2n_{th}+1),$$
(3)

where n_{th} is the thermal photon number of the bath, and φ is the squeezing phase. For M = 0 the bath is at thermal equilibrium, and N coincides with the average number of thermal photons in the bath. Otherwise, the bath is said to be asqueezeda, or phase sensitive.



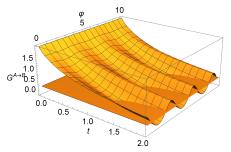
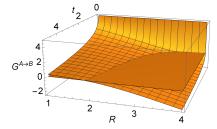


Figure 1. Evolution of quantum steering of a squeezed vacuum state with squeezing parameter r = 1 versus thermal photon number n_{th} of the squeezed thermal bath with squeezing parameter R = 0.5, dissipation coefficient $\lambda = 0.1$, and squeezing phase $\varphi = 0$.

Figure 2. Evolution of quantum steering of a squeezed vacuum state $n_{th} = 0$, with squeezing parameter r = 1 versus phase φ of the squeezed thermal bath with squeezing parameter R = 1 and dissipation coefficient $\lambda = 0.1$.



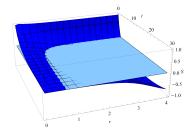


Figure 3. Evolution of quantum steering of a squeezed vacuum state with squeezing parameter r = 2 versus squeezing parameter *R* of the squeezed vacuum bath $n_{th} = 0$, dissipation coefficient $\lambda = 0.1$, and squeezing phase $\varphi = 0$.

Figure 4. Gaussian quantum steering *S* versus time *t* and squeezing parameter *r* of a squeezed vacuum state, with temperature $\coth(\omega/2kT) = 2$, dissipation constant $\lambda = 0.1$ and $\omega = 1$.

CONCLUSION

 Steering is a type of quantum nonlocality that is logically distnct from both nonseparabiliand Bell nonlocality.

CONCLUSION

- Steering is a type of quantum nonlocality that is logically distnct from both nonseparabiliand Bell nonlocality.
- Steerability is strictly stronger than nonseparability, but Bell nonlocality is strictly stronger than steerability.

CONCLUSION

- Steering is a type of quantum nonlocality that is logically distnct from both nonseparabiliand Bell nonlocality.
- Steerability is strictly stronger than nonseparability, but Bell nonlocality is strictly stronger than steerability.
- ► For a non-zero temperature of the thermal reservoir the initially steerable Gausian states become unsteerable in a finite time.