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Introduction

Introduction - Turbulent Prandtl numbers

» Fully developed turbulence — Turbulence at very high Reynolds
numbers

» Diffusion processes in fully developed turbulence are characterized by
the turbulent Prandtl numbers (ratio of the turbulent viscosity to the
corresponding coefficients of diffusivity): Pry, Pry ¢ and Pr, ;

» Interval of experimentally obtained values for Prandtl number:
Pr: € (0.7,0.9)
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Trubulence, (1971)

» Pr; for a passive scalar advection (temperature, concentration of an
impurity) - one-loop RG result: Pry = 0.7179
L. Ts. Adzhemyan, A. N. Vasilev, and M. Hnatich, Teor. Mat. Fiz. 58, 72 (1984)

» Two-loop RG calculations give: Pr; = 0.7051
L. Ts. Adzhemyan, etal., Phys. Rev E 71, 056311 (2005)
E. Jur¢&isinovd, etal., Phys. Rev. E 82, 028301 (2010)

» The two-loop corrections are less than 2% of the one-loop value
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Introduction

Turbulent Prandtl numbers

» Open question: influence of internal structure of the advected field on
the diffusion processes

» Two-loop value of the turbulent magnetic Prandtl number in the
framework of the kinematic MHD turbulence: Pr,, : = 0.7051
E. Jur¢&isinovd, etal., Phys. Rev. E 84, 046311 (2011)

» There is no difference between diffusion processes of a scalar quantity
(e.g., temperature) and the weak magnetic field in the kinematic
MHD turbulence!

» Two-loop value of the turbulent vector Prandtl number in the
framework of the so called A = 0 model: Pr, ; = 0.7307
E. Jurcisinovd, etal., Phys. Rev. E 89, 043023 (2014)

» As we can see, the A = 0 model feels the vector structure of'the
advected field so Pr, ; # Prm ¢ while Pry,: = Pr;
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Passive vector advection

Three models of passive vector advection

Three models of passive vector advection in fully developed turbulence

A =0 passive admixture
b+ (v-9)b = wurAb + f°, (1)

A=1 kinematic MHD
dtb+ (v-9)b = uprpAb+ (b-d)v + P, (2)

A= —1 linearized N — S
dtb+ (v-9)b = uprpAb — (b-9d)v + P, (3)
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Formulation of the Model

Stochastic formulation of the model

The passive vector advection is described by the following system of
stochastic equations

b+ (v-9)b = wurgAb+ A(b-d)v —0Q + f° (4)
v+ (v-O)v = pAv—0P +f" (5)

ug is inverse Prandtl number, vq is kinematical viscosity, f is a random
force, v. means incompressible velocity field (for this model) and Q, P
represent corresponding pressures.

In (4) we use standard Gaussian random noise with zero mean and the
correlation function

(PP (X)) = 8(t — ) Cy(Ix — x|/ L) (6)
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Formulation of the Model

Stochastic formulation of the model

The correlation function of the stochastic Navier-Stokes equation has the
standard form

(Y ()6 (X)) = o(t — t')(2m) ¢ / dkPjj(k) Dr(k) x exp[ik(x —x)] (7)

with
Pj(k) = 6jj — kikj/Kk>. (8)

in an isotropic incompressible flow
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Formulation of the Model

Field theoretic formulation of the model

The stochastic model is equivalent to the quantum field model with
double set of fields

¢ = {v,b,v, b’} (9)

and action functional of the model

S(®) = VDpV' /24 b' Db’ /2 + V' [—0pv + vgAv — (v - O)V]
4 b/[-:b + voupAb — (v- )b + A(b - d)v] (10)

where Df are correlation functions of the random force. Necessary
integrations over {t,x} and summations over vector indices are implied.
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Formulation of the Model

Field theoretic formulation of the model

Propagators
P;i(k)
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Vertices
biv; Vb — Vig = i(kjdy — Akidj), (15)
vivilWgvi/2 — Wy = i(kidyj + ki), (16)
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Analysis of the Model

Feynman diagrams, one-loop approximation
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Figure 1: Feynman diagrams in one-loop approximation. Self energy operatars
Zb’b and Zv’v-
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Analysis of the Model

Feynman diagrams, two-loop approximation
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Figure 2: Feynman diagrams in two-loop approximation. Self energy operatars
Zb’b and Zv’v-
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Analysis of the Model

Renormalization constants

Divergences are present only in the one-irreducible functions (b:b;) and

(v/vj) thus we need only two independent renormalization constants
Renormalized action functional

Sr(®) = VDpV /2 +b Db’ /2 + V' [-0wv + vZ1 Av — (v - O)V]
+ B[-0ib+ vuZolb — (v- )b+ A(b - )] (17)

By multiplicative renormalization of the parameters of the model we obtain
vo =vZ,, g = g;ﬂfzg, ugp = uZ, (18)

where Z, is related to Z, by relation

Z, =23 (19)
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Analysis of the Model

Renormalization constants

Renormalization constants Z; and Z> relate to the renormalization
constants Z,, Z; and Z, by the following relations

Z,=2, Zg=2Z%°  Z,=2Z* (20)

General perturbation form of the renormalization constants, MS scheme

Zi(g,d,e, A) = 1+Zg Z (d A) (21)
n=1 j=1
" O
Z>(g,u,d,e, A) = 1+Zg ZM (22)
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Analysis of the Model

Turbulent vector Prandtl number in A model

The two-loop approximation for the inverse turbulent Prandtl number

L. Ts. Adzhemyan, J. Honkonen, T. L. Kim and L. Sladkoff, Phys. Rev. E 71, 056311, (2005)

1+ oM 12 2)2
Uef = u£1)<1_|_5{“[)\_8(d+)3(u£1))

1+ 2ut) 3(d —1)?
(2m)? 8(d +2) (1)
+ Sd 3(d )[v_ (*1 )]}) (23)

where a, and aj are integral functions of k.
The one-loop value for the inverse magnetic Prandtl number is given by

ul! [1—|—u ]—2(d—|—2)/d (24)
and for d = 3 it is oY) = 1.393
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Analysis of the Model

Turbulent vector Prandtl number in A model

Turbulent vector Prandtl number in one-loop approximation

1 1
Prit) = e (25)
Uy
where uil) has the form
WO L[ g, 2Pk (b2t b3)1/3] (26)
* 3a 2 (b2 + b3)1/3 21/3

remecky (iep sas, bltp jinr) MMCP’2017 15 / 20



Analysis of the Model

Turbulent vector Prandtl number in A model

Turbulent vector Prandtl number in two-loop approximation

P = 27
At Ueff (27)
where
(1) 2
(1) 14+ uy 128(d + 2) (1)
Ue = U, l1+ed ——— | N — ——B(u,
g ( {1+2u£)[ (d—1p D)
m)98(d+2), . @

o s o) (28)

E. Jurcisinovd, etal., Phys. Rev. E 93, 033106 (2016)
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Results
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Figure 3: The behavior of the two-loop Pra : for three special cases, namely,
A=-1---Prpy, A=0---Pr,yand A=1---Pry,.
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Results

Comparison of the two-loop and and one-loop approximation of the model

» A= —1and A =1 models are very well described at the one-loop
approximation

» Two-loop corrections to the turbulent Prandtl number are significant
for models inside the interval —1 < A < 1, especially for the model of
a passively advected vector field A =0

remecky (iep sas, bltp jinr) MMCP’2017 18 / 20



Results
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Figure 4: The dependence of the one-loop Prf(‘fz and the two-loop Pra'{"turbulent

vector Prandtl number on the parameter A for the spatial dimension d ='3.
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Conclusion

Conclusion

» We were interested in Prandtl numbers of different passive vector
models in fully developed turbulence driven by stochastic
Navier-Stokes equation

» Three physically interesting models were analyzed, namely

» A = —1 model of linearized Navier-Stokes equation
» A = 0 vector impurity by Navier-Stokes equation
» A =1 kinematic MHD turbulence

» Turbulent magnetic Prandtl numbers for the models were established
and their dependece on parameter 4 and on spatial dimension|id/was
shown
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