Diffusion processes in A model of vector admixture: Turbulent Prandtl number

E. Jurčišinová ${ }^{1}$, M. Jurčišin ${ }^{1}$, R. Remecky ${ }^{1,2}$
jurcisine@saske.sk jurcisin@saske.sk remecky@saske.sk
${ }^{1}$ Institute of Experimental Physics, SAS, Košice
${ }^{2}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna
Mathematical Modeling and Computational Physics 3-7 July, 2017, Dubna, Russian Federation

Outline

Introduction

Passive vector advection

Formulation of the Model

Analysis of the Model

Results

Conclusion

Introduction - Turbulent Prandtl numbers

- Fully developed turbulence \rightarrow Turbulence at very high Reynolds numbers
- Diffusion processes in fully developed turbulence are characterized by the turbulent Prandtl numbers (ratio of the turbulent viscosity to the corresponding coefficients of diffusivity): $P r_{t}, P r_{m, t}$ and $P r_{v, t}$
- Interval of experimentally obtained values for Prandtl number: $P r_{t} \in\langle 0.7,0.9\rangle$
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Trubulence, (1971)
- Pr_{t} for a passive scalar advection (temperature, concentration of an impurity) - one-loop RG result: $P r_{t}=0.7179$
L. Ts. Adzhemyan, A. N. Vasilev, and M. Hnatich, Teor. Mat. Fiz. 58, 72 (1984)
- Two-loop RG calculations give: $P r_{t}=0.7051$
L. Ts. Adzhemyan, etal., Phys. Rev E 71, 056311 (2005)
E. Jurčisinová, etal., Phys. Rev. E 82, 028301 (2010)
- The two-loop corrections are less than 2% of the one-loop value

Turbulent Prandtl numbers

- Open question: influence of internal structure of the advected field on the diffusion processes
- Two-loop value of the turbulent magnetic Prandtl number in the framework of the kinematic MHD turbulence: $\operatorname{Pr}_{m, t}=0.7051$
E. Jurčisínová, etal., Phys. Rev. E 84, 046311 (2011)
- There is no difference between diffusion processes of a scalar quantity (e.g., temperature) and the weak magnetic field in the kinematic MHD turbulence!
- Two-loop value of the turbulent vector Prandtl number in the framework of the so called $\mathcal{A}=0$ model: $\operatorname{Pr}_{\mathrm{v}, t}=0.7307$
E. Jurčisínová, etal., Phys. Rev. E 89, 043023 (2014)
- As we can see, the $\mathcal{A}=0$ model feels the vector structure of the advected field so $\operatorname{Pr}_{v, t} \neq P r_{m, t}$ while $P r_{m, t}=P r_{t}$

Three models of passive vector advection

Three models of passive vector advection in fully developed turbulence

$$
\begin{aligned}
& \mathcal{A}=0 \quad \text { passive admixture } \\
\partial_{t} \mathbf{b}+(\mathbf{v} \cdot \partial) \mathbf{b}= & u_{0} \nu_{0} \Delta \mathbf{b}+\mathbf{f}^{\mathbf{b}}, \\
& \mathcal{A}=1 \quad \text { kinematic } M H D \\
\partial_{t} \mathbf{b}+(\mathbf{v} \cdot \partial) \mathbf{b}= & u_{0} \nu_{0} \Delta \mathbf{b}+(\mathbf{b} \cdot \partial) \mathbf{v}+\mathbf{f}^{\mathbf{b}}, \\
& \mathcal{A}=-1 \quad \text { linearized } N-S \\
\partial_{t} \mathbf{b}+(\mathbf{v} \cdot \partial) \mathbf{b}= & u_{0} \nu_{0} \Delta \mathbf{b}-(\mathbf{b} \cdot \partial) \mathbf{v}+\mathbf{f}^{\mathbf{b}},
\end{aligned}
$$

Stochastic formulation of the model

The passive vector advection is described by the following system of stochastic equations

$$
\begin{align*}
\partial_{t} \mathbf{b}+(\mathbf{v} \cdot \partial) \mathbf{b} & =u_{0} \nu_{0} \Delta \mathbf{b}+\mathcal{A}(\mathbf{b} \cdot \partial) \mathbf{v}-\partial \mathcal{Q}+\mathbf{f}^{\mathbf{b}} \tag{4}\\
\partial_{t} \mathbf{v}+(\mathbf{v} \cdot \partial) \mathbf{v} & =\nu_{0} \Delta \mathbf{v}-\partial \mathcal{P}+\mathbf{f}^{\mathbf{v}} \tag{5}
\end{align*}
$$

u_{0} is inverse Prandtl number, ν_{0} is kinematical viscosity, f is a random force, \mathbf{v} means incompressible velocity field (for this model) and \mathcal{Q}, \mathcal{P} represent corresponding pressures.

In (4) we use standard Gaussian random noise with zero mean and the correlation function

$$
\left\langle f_{i}^{b}(x) f_{j}^{b}\left(x^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) C_{i j}\left(\left|x-x^{\prime}\right| / L\right)
$$

Stochastic formulation of the model

The correlation function of the stochastic Navier-Stokes equation has the standard form

$$
\begin{equation*}
\left\langle f_{i}^{\vee}(x) f_{j}^{\vee}\left(x^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)(2 \pi)^{-d} \int d \mathbf{k} P_{i j}(\mathbf{k}) D_{f}(k) \times \exp \left[i \mathbf{k}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right] \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{i j}(\mathbf{k})=\delta_{i j}-k_{i} k_{j} / k^{2} \tag{8}
\end{equation*}
$$

in an isotropic incompressible flow

Field theoretic formulation of the model

The stochastic model is equivalent to the quantum field model with double set of fields

$$
\begin{equation*}
\Phi=\left\{\mathbf{v}, \mathbf{b}, \mathbf{v}^{\prime}, \mathbf{b}^{\prime}\right\} \tag{9}
\end{equation*}
$$

and action functional of the model

$$
\begin{align*}
S(\Phi) & =\mathbf{v}^{\prime} D_{f v} \mathbf{v}^{\prime} / 2+\mathbf{b}^{\prime} D_{f} \mathbf{\mathbf { b } ^ { \prime }} / 2+\mathbf{v}^{\prime}\left[-\partial_{t} \mathbf{v}+\nu_{0} \Delta \mathbf{v}-(\mathbf{v} \cdot \partial) \mathbf{v}\right] \\
& +\mathbf{b}^{\prime}\left[-\partial_{t} \mathbf{b}+\nu_{0} u_{0} \Delta \mathbf{b}-(\mathbf{v} \cdot \partial) \mathbf{b}+\mathcal{A}(\mathbf{b} \cdot \partial) \mathbf{v}\right] \tag{10}
\end{align*}
$$

where D_{f} are correlation functions of the random force. Necessary integrations over $\{t, \mathbf{x}\}$ and summations over vector indices are implied.

Field theoretic formulation of the model

Propagators

$$
\begin{align*}
\left\langle b_{i}^{\prime} b_{j}\right\rangle_{0(\mathbf{k})}=\left\langle b_{i} b_{j}^{\prime}\right\rangle_{0(\mathbf{k})}^{*} & =\frac{P_{i j}(\mathbf{k})}{i \omega_{k}+\nu_{0} u_{0} k^{2}}, \tag{11}\\
\left\langle v_{i}^{\prime} v_{j}\right\rangle_{0(\mathbf{k})}=\left\langle v_{i} v_{j}^{\prime}\right\rangle_{0(\mathbf{k})}^{*} & =\frac{P_{i j}(\mathbf{k})}{i \omega_{k}+\nu_{0} k^{2}}, \tag{12}\\
\left\langle b_{i} b_{j}\right\rangle_{0(\mathbf{k})} & =\frac{C_{i j}(\mathbf{k})}{\left(i \omega_{k}+\nu_{0} u_{0} k^{2}\right)\left(-i \omega_{k}+\nu_{0} u_{0} k^{2}\right)}, \tag{13}\\
\left\langle v_{i} v_{j}\right\rangle_{0(\mathbf{k})} & =\frac{g_{0} \nu_{0}^{3} k^{4-d-2 \varepsilon} P_{i j}(\mathbf{k})}{\left(i \omega_{k}+\nu_{0} k^{2}\right)\left(-i \omega_{k}+\nu_{0} k^{2}\right)}, \tag{14}
\end{align*}
$$

Vertices

$$
\begin{align*}
b_{i}^{\prime} v_{j} V_{i j l} b_{l} \rightarrow V_{i j l} & =i\left(k_{j} \delta_{i l}-\mathcal{A} k_{l} \delta_{i j}\right), \tag{15}\\
v_{i}^{\prime} v_{j} W_{i j l} v_{l} / 2 \rightarrow W_{i j l} & =i\left(k_{l} \delta_{i j}+k_{j} \delta_{i l}\right), \tag{16}
\end{align*}
$$

Feynman diagrams, one-loop approximation

Figure 1: Feynman diagrams in one-loop approximation. Self energy operators $\Sigma_{b^{\prime} b}$ and $\Sigma_{v^{\prime} v}$.

Feynman diagrams, two-loop approximation

Figure 2: Feynman diagrams in two-loop approximation. Self energy operators $\Sigma_{b^{\prime} b}$ and $\Sigma_{v^{\prime} v}$.

Renormalization constants

Divergences are present only in the one-irreducible functions $\left\langle b_{i}^{\prime} b_{j}\right\rangle$ and $\left\langle v_{i}^{\prime} v_{j}\right\rangle$ thus we need only two independent renormalization constants Renormalized action functional

$$
\begin{align*}
S_{R}(\Phi) & =\mathbf{v}^{\prime} D_{f} \mathbf{v} \mathbf{v}^{\prime} / 2+\mathbf{b}^{\prime} D_{f} \mathbf{b}^{\prime} / 2+\mathbf{v}^{\prime}\left[-\partial_{t} \mathbf{v}+\nu Z_{1} \Delta \mathbf{v}-(\mathbf{v} \cdot \partial) \mathbf{v}\right] \\
& +\mathbf{b}^{\prime}\left[-\partial_{t} \mathbf{b}+\nu u Z_{2} \Delta \mathbf{b}-(\mathbf{v} \cdot \partial) \mathbf{b}+\mathcal{A}(\mathbf{b} \cdot \partial) \mathbf{v}\right] \tag{17}
\end{align*}
$$

By multiplicative renormalization of the parameters of the model we obtain

$$
\begin{equation*}
\nu_{0}=\nu Z_{\nu}, \quad g_{0}=g \mu^{2 \varepsilon} Z_{g}, \quad u_{0}=u Z_{u} \tag{18}
\end{equation*}
$$

where Z_{g} is related to Z_{ν} by relation

$$
Z_{g}=Z_{\nu}^{-3}
$$

Renormalization constants

Renormalization constants Z_{1} and Z_{2} relate to the renormalization constants Z_{ν}, Z_{g} and Z_{u} by the following relations

$$
\begin{equation*}
Z_{\nu}=Z_{1}, \quad Z_{g}=Z_{1}^{-3}, \quad Z_{u}=Z_{2} Z_{1}^{-1} \tag{20}
\end{equation*}
$$

General perturbation form of the renormalization constants, MS scheme

$$
\begin{align*}
Z_{1}(g, d, \varepsilon, \mathcal{A}) & =1+\sum_{n=1}^{\infty} g^{n} \sum_{j=1}^{n} \frac{z_{n j}^{(1)}(d, \mathcal{A})}{\varepsilon^{j}} \tag{21}\\
Z_{2}(g, u, d, \varepsilon, \mathcal{A}) & =1+\sum_{n=1}^{\infty} g^{n} \sum_{j=1}^{n} \frac{z_{n j}^{(2)}(u, d, \mathcal{A})}{\varepsilon^{j}} \tag{22}
\end{align*}
$$

Turbulent vector Prandtl number in \mathcal{A} model

The two-loop approximation for the inverse turbulent Prandtl number
L. Ts. Adzhemyan, J. Honkonen, T. L. Kim and L. Sladkoff, Phys. Rev. E 71, 056311, (2005)

$$
\begin{align*}
u_{\text {eff }}= & u_{*}^{(1)}\left(1+\varepsilon\left\{\frac{1+u_{*}^{(1)}}{1+2 u_{*}^{(1)}}\left[\lambda-\frac{128(d+2)^{2}}{3(d-1)^{2}} \mathcal{B}\left(u_{*}^{(1)}\right)\right]\right.\right. \\
& \left.\left.+\frac{(2 \pi)^{d}}{S_{d}} \frac{8(d+2)}{3(d-1)}\left[a_{v}-a_{b}\left(u_{*}^{(1)}\right)\right]\right\}\right) \tag{23}
\end{align*}
$$

where a_{v} and a_{b} are integral functions of \mathbf{k}.
The one-loop value for the inverse magnetic Prandtl number is given by

$$
u_{*}^{(1)}\left[1+u_{*}^{(1)}\right]=2(d+2) / d
$$

and for $d=3$ it is $u_{*}^{(1)}=1.393$

Turbulent vector Prandtl number in \mathcal{A} model

Turbulent vector Prandtl number in one-loop approximation

$$
\begin{equation*}
\operatorname{Pr}_{\mathcal{A}, t}^{(1)}=\frac{1}{u_{*}^{(1)}} \tag{25}
\end{equation*}
$$

where $u_{*}^{(1)}$ has the form

$$
\begin{equation*}
u_{*}^{(1)}=\frac{1}{3 a_{2}}\left[-2 a_{2}-\frac{2^{1 / 3} b_{1}}{\left(b_{2}+b_{3}\right)^{1 / 3}}+\frac{\left(b_{2}+b_{3}\right)^{1 / 3}}{2^{1 / 3}}\right] \tag{26}
\end{equation*}
$$

Turbulent vector Prandtl number in \mathcal{A} model

Turbulent vector Prandtl number in two-loop approximation

$$
\begin{equation*}
\operatorname{Pr}_{\mathcal{A}, t}=\frac{1}{u_{\text {eff }}} \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
u_{\text {eff }}= & u_{*}^{(1)}\left(1+\varepsilon\left\{\frac{1+u_{*}^{(1)}}{1+2 u_{*}^{(1)}}\left[\lambda-\frac{128(d+2)^{2}}{3(d-1)^{2}} \mathcal{B}\left(u_{*}^{(1)}\right)\right]\right.\right. \\
& \left.\left.+\frac{(2 \pi)^{d}}{S_{d}} \frac{8(d+2)}{3(d-1)}\left[a_{v}-a_{b}\left(u_{*}^{(1)}\right)\right]\right\}\right) \tag{28}
\end{align*}
$$

E. Jurčišinová, etal., Phys. Rev. E 93, 033106 (2016)

Results

Figure 3: The behavior of the two-loop $\operatorname{Pr}_{A, t}$ for three special cases, namely, $\mathcal{A}=-1 \cdots \operatorname{Pr}_{1, t}, \mathcal{A}=0 \cdots \operatorname{Pr}_{v, t}$ and $\mathcal{A}=1 \cdots \operatorname{Pr}_{m, t}$.

Results

Comparison of the two-loop and and one-loop approximation of the model

- $\mathcal{A}=-1$ and $\mathcal{A}=1$ models are very well described at the one-loop approximation
- Two-loop corrections to the turbulent Prandtl number are significant for models inside the interval $-1<\mathcal{A}<1$, especially for the model of a passively advected vector field $\mathcal{A}=0$

Results

Figure 4: The dependence of the one-loop $\operatorname{Pr}_{A, t}^{(1)}$ and the two-loop $P r_{A, t}$ turbulent vector Prandtl number on the parameter \mathcal{A} for the spatial dimension $d=3$.

Conclusion

- We were interested in Prandtl numbers of different passive vector models in fully developed turbulence driven by stochastic Navier-Stokes equation
- Three physically interesting models were analyzed, namely
- $\mathcal{A}=-1$ model of linearized Navier-Stokes equation
- $\mathcal{A}=0$ vector impurity by Navier-Stokes equation
- $\mathcal{A}=1$ kinematic MHD turbulence
- Turbulent magnetic Prandtl numbers for the models were established and their dependece on parameter \mathcal{A} and on spatial dimension d was shown

