Computer algebra algorithms of simplification of tensor expressions

A.Kryukov ${ }^{1}$, G.Shpiz

SINP MSU, Msocow

${ }^{1}$ E-mail: kryukov@theory.sinp.msu.ru

Outlook

- Introduction
- Problem
- Permutation group and tensor symmetry
- Dummy (summation) indices
- Algorithms
- Double coset
- Group algebra
- Graph isomorphism
- Conclusions
A.Kryukov, MMCP-2017, Dubna, Russia

Introduction

- Tensor calculation is widely use in
- Theoretical physics
- Solid state physics
- Mechanics
- We will discuss different algorithms for simplification of tensor expressions
- We also presented a sketch of algorithm based on an isomorphism of graphs corresponding to tensor monomials
- Types of tensor calculations
- Components calculations
- Tensor with abstract index calculations
- Abstract tensor calculations

Introduction: Component calculations

- Choose a coordinate basis
- Calculation of components as scalar objects
- Advantages:
- Often we need the value of tensor components in fixed coordinate bases
- Disadvantages:
- Does not utilize specific properties of tensors like symmetries
- We do not discuss this approach

Introduction: Tensor with abstract indices

- T(i,j,k,l) - as an abstract indexed object
- We do not use a fixed coordinate basis
- May use knowledge about the dimension of the corresponding space
- Advantage:
- Use symmetry properties with respect to permutation of indices and summation indices too
- Disadvantage:
- Good for calculation of invariants
- We often need the value of components at the end of calculation too

Introduction: Abstract tensor expressions

- Just for illustration

- Exterior algebra
- Not discuss here at all

Problem: Simplification of tensor expressions

- For simplicity we will not distinguish the upper and lower indices
- We also do not interested in the transformation properties of tensors under coordinate transformations
- We will consider tensor as an indexed formal term which may have defined symmetry properties.
- Let us consider the tensor expression:

$$
T(i, j, k, l) * T(k, l, m, n)+\ldots
$$

- There are two main problems:
- Are the two monomials equal?
- Is a monomial equal to zero?

Permutation group and tensor symmetry

- Let us consider the Riemann tensor:

$$
\begin{aligned}
& R(i, j, k, l)=-R(j, i, k, l) \\
& R(i, j, k, l)=R(k, l, i, j)
\end{aligned}
$$

- Let π be an element of the permutation group S_{4}

$$
\begin{aligned}
& \exists \pi \in S(4): \pi(1,2,3,4)=(2,1,3,4) \\
& R(i, j, k, l)=(-1) * R(\pi(i, j, k, l))
\end{aligned}
$$

- Thus the symmetries of the (Riemann) tensor form a subgroup of the permutation group

Dummy (summation) indices

- Ricci tensor:

$$
R(j, I)=R(i, j, i, I)
$$

- Scalar curvature:

$$
R=R(m, m)=R(i, m, i, m)
$$

- Renaming of dummies:

$$
R(i, m, i, m)=R(m, i, m, i)
$$

- Permutation dummies:

$$
\mathrm{R}\left(\mathrm{i}_{1}, \mathrm{~m}, \mathrm{i}_{2}, \mathrm{~m}\right)=\mathrm{R}\left(\mathrm{i}_{2}, \mathrm{~m}, \mathrm{i}_{1}, \mathrm{~m}\right)
$$

Algorithm: Double coset

- Symmetry group (S)
- Subgroup of permutation group acting from the right
- Dummy indices (L)
- subgroup of permutation group acting from the left
- Simplification problem is equivalent to finding double coset

LIT/S

- See details
A.Rodionov, A.Taranov, EUROCAL'87, LNCS, vol. 378 (1989) p. 192.
G.Butler, LNCS, vol. 559 (1991)
L.R.U.Manssur, R.Portugal, CPC, vol.157(2004), p. 173
- Problem: multiterm identity (like Bianci identity)

Algorithm: Group algebra

- Let us consider the group algebra
$\mathrm{t}_{1}{ }^{*} \mathrm{e}^{1}+\mathrm{t}_{2}{ }^{*} \mathrm{e}^{2}+\ldots$ (n ! Terms)
where $e_{i}=T\left(\pi_{i}(1,2,3,4)\right), i=1 . . n$!
- All available relations define a k-dimensional hyperplane K in Rn! Space:

$$
R n!=K+Q
$$

- All tensor relations can be treat in a unified manner
- The conjugate space Q is the space of canonical elements
- See details
V.Ilyin, A.Kryukov, CPC, vol. 96, No 1, pp 36-52
- Problem: Dimension of space is \mathbf{n} !

Algorithm: Mean over the orbit of monomial

- In practical cases we have:
- the monomials have not so many tensor terms (~10)
- Each term has rather reach symmetries
- $R(i, j, j, 1): 4!=24$ but the only 2 independent components
- If the number of terms in a monomial is about 5 the simplest way to find the stabilizer of the monomial is calculation of the average over the orbit of the monomial

Algorithm: Graph isomorphism

- Tensor type and the set of indices without summation will be called tensor signature
- Each monomial maps to a colored graph
- A vertex is a tensor in the monomial. The color of the vertex is defined by its signature.
- The internal edges correspond to the summation of indices with a weight
- Example:

$$
\begin{aligned}
& R(i, j, k, I) * R(k, I, m, n) \rightarrow \\
& R(i, j, k, I) * R(m, n, k, I)
\end{aligned}
$$

Algorithm: Graph isomorthism

- Lexicographical ordering:

$-T_{1}(i, j, .)<.T_{2}(n, m, .$.$) iff T_{1}$ and T_{2} have the same type and $(i, j, .) \leq.(m, n, .$.

- Dummies > any free indices
- Transform each tensor to the canonical form with respect to its symmetry properties.
- There is a special simplification procedure for each tensor type
- No internal contractions of indices. Otherwise this is another type of tensor (Riemann \rightarrow Ricci)

Algorithm: Graph isomorphism

- Every step should be finished by the canonization of tensor itself and ordering the tensor in monomials (so called "pre-canonical form")
- Apply the allowed transformation of dummy indices to the monomial.
- For example exchange two pairs of dummies
- Calculate the average over all the monomials which have isomorphic graphs with the initial one
- The obtained polynomial is invariant with respect to the transformations from the equivalence class of the initial monomial

Algorithm: Graph isomorphism

- Using the obtained invariants we can get the canonical form of the monomials
- Two monomials is equal iff their canonical forms is the same lexicographically
- The algorithm significantly reduce the amount of computations in the case of large groups.
- Every time we work among orbits which not so many.
- Similar approaches:
- Zhendong Li, Sihong Shao, Wenjian Liu, arXiv:1604.06156v1
- S.Poslavsky, D.Bolotin, Journal of Physics: Conference Series, Vol. 608

Conclusions

- Now we realize a prototype of the program on Python language
- The program is working rather good for tensor expressions in practical cases where monomials contain 10-20 terms.
- Each term contains up to 10 indices
- We have a plan to optimize the program and to compare it with other similar programs

Thank you very much
Questions?

