Study of the GEM detector performance in BM@N experiment

Vasilisa Lenivenko on behalf of BM@N Collaboration JINR LHEP

Int.Conf. MMCP, Dubna, July 2017

Outline

- BM@N overview
- The principle of GEM detectors working
- Gas Electron Multiplier (GEM) for trajectories reconstruction
- Investigation of the GEM performance

(hit efficiency and spatial resolution)

BM@N energy range is suited for the search of hypernuclei

BM@N setup

- Central tracker (GEM) inside analyzing magnet to reconstruct AA interactions
- Outer tracker (DCH, CPC) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC chambers and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ ,e+e-
- MWPC chambers were used as beam trajectory detectors

The Gas Electron Multiplier (GEM)

Electric field in the region of the holes of a GEM electrode

Schematics of single GEM detector with Cartesian two-dimensional strip readout.

Simulation of electron shift in magnetic field

The basic requirements for the tracking system are:

- capability of stable operation in conditions of high radiation loadings up to 10⁵ Hz/cm²;
- maximum possible geometrical acceptance within the BM@N experiment dimensions;
- good timing (5-10ns) and spatial resolution (100 -150 microns).

Track-segment building algorithm (Mag.field off)

Reconstructed hit coordinate (measurement) :

Collecting X & X' hits located around straight line we build spatial track-segments.

GEM Spatial Resolution & Hit Efficiency

Hit Efficiency per layer (from segments):

GEM hit efficiency per Layer is calculated for events where track-segments were reconstructed and defined as ratio:

```
(Number of the reconstructed hits in a Layer) / (Number of track-segments).
```


Spatial resolution calculation:

Resolution in the current layer calculated from the residual (Δ) between the measured coordinate (hit) and the predicted track coordinate from straight line fit .

Testing of efficiency calculation algorithm with MC

Established Efficiency per layer is 90%

GEM hit efficiency per layer with Nuclotron data

9

Resolution for GEM with $Ar + CO_2$ (Nuclotron data)

Resolution for GEM with Ar + Isobutane (Nuclotron data)

Conclusions

GEM detector performance in BM@N experiment with Nuclotron data was studied:

- Satisfied hit efficiency per layer 90-97%;
- Spatial resolution 160-200 microns with gas mixture $Ar + CO_2$;
- Good spatial resolution 80-120 microns with gas mixture Ar + Isobutane.

Next step: physical processes reconstruction with mag.field data.

Thank you for your attention!