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Introduction & Motivation

Integration by parts is one of the most popular techniques in the analysis
of integrals and is one of the simplest method to generate asymptotic
expansions of integrals.

The product of the technique is usually a divergent series formed from
evaluating boundary terms and a remaining integral:

Initial Integral = Z Boundary Terms

+ A Transformed Integral.

Due to the successive differentiation and anti-differentiation required to
form the series or the remaining integral, the technique is difficult to apply
to problems more complicated than the simplest.

In this contribution, we explore a generalized and formalized integration by
parts to create equivalent representations to some challenging integrals.
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Integration by Parts & Asymptotic Series

Integrating by parts the Euler integral Ei(x) where x is real and positive,

leads to:

—t

"0 et e X , N N > e

We set Sp(x) to be the partial sum of the first n terms:

Sn(x) = e~ (1 LA (=1)"*(n— 1)!) |

X X xn

For large n, the magnitude of the n'' term of S,(x) increases as n
increases. The infinite series for which S,(x) is the partial sum is then
divergent for any fixed x.

Hassan Safouhi

5/ 30



Asymptotic Series / Divergent Series

Rn(x) which we set to be the remainder after n terms:

00 eft )
Ra(x) = (=1)"n! / prasy dt is unbounded as n — oo.
X

If we let x become large and consider N fixed, then:

eft

o N!
’RN(X)’ = ‘(—1)N N! / tht‘ < Weix — 0 as x — oc.

N
Note that We”‘ is the (N 4 1) term of the series S,(x).

Note also that the ratio of Ry(x) to the last term in Sy(x) is:

Rn(x)

N
‘(—1)N—1e—X(N—1)!/x—’V <— =0 as x—o0.

X
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Asymptotic Series / Divergent Series

Integrating by parts the Euler integral leads to the Euler series:

_x 00

et e n!
A Tdt ~ TZ(_I)F’; as X — 0Q.

n=0
The key distinction here is the order in which the limits are taken:
@ The series would be convergent if lim R,(x) = 0 for fixed x > 1.
n—o0
@ The series is asymptotic since lim Ry(x) = 0 for fixed N.
X—r00
From a computational or numerical point of view asymptotic/divergent
expansions are preferred over convergent series.

To illustrate the advantages of asymptotic series, we list values of Sp(x)
forn=20,1,2,... for x =5,10, 15.
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Asymptotic Series / Divergent Series

Table: Partial sums S,(x) for x =5, 10, 15.

n x=5 x =10 x =15
0 1.3475893998(-3) 4.53999297624(-6) 2.03934880334(-8)
1 1.0780715198(-3) 4.08599367862(-6) 1.90339221645(-8)
2 1.1858786718(-3) 4.17679353814(-6) 1.92151976137(-8)
3 1.1211943806(-3) 4.14955358029(-6) 1.91789425239(-8)
4 1.1729418136(-3) 4.16044956343(-6) 1.91886105478(-8)
5 1.1211943806(-3) 4.15500157186(-6) 1.91853878732(-8)
6 1.1832913001(-3) 4.15827036680(-6) 1.91866769430(-8)
7 1.0963556128(-3) 4.15598221034(-6) 1.91860753771(-8)
8 1.2354527126(-3) 4.15781273551(-6) 1.91863962123(-8)
9 9.8507793300(-4) 4.15616526286(-6) 1.91862037112(-8)
10 1.4858274922(-3) 4.15781273551(-6) 1.91863320452(-8)
11 3.8417846196(-4) 4.15600051559(-6) 1.91862379336(-8)
12 3.0281361345(-3) 4.15817517949(-6) 1.91863132229(-8)
13 -3.8461538141(-3) 4.15534811642(-6) 1.91862479721(-8)
14 1.5401858042(-2) 4.15930600472(-6) 1.91863088728(-8)
15 -4.2342177526(-2) 4.15336917227(-6) 1.91862479721(-8)
16 1.4243873629(-1) 4.16286810419(-6) 1.91863129329(-8)
Ei(x) 1.1482955912(-3) 4.15696892968(-6) 1.91862789214(-8)
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Asymptotic Series / Divergent Series

Here, we plot the magnitude of the n'® term as a function of n.

o Optimally Truncating the Asymptotic Series for Ei(x)
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Asymptotic Series / Divergent Series

The series we found for Ei(x) is called an asymptotic series.

The most accurate way to compute Ei(x) for a given x is to terminate the
summation when the first term found to be greater than the previous one
is obtained.

The ratio of the (n+ 1)*™" to the n' term in S,(x) is given by:

(—1)" nl x—(nt1) g=x n

(-1 I(n—1)Ixnex| x

In order to obtain the best approximation for Ei(x), n must be taken to be
the largest integral part of the given x.
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Integration by Parts & Transformed Integrals

Let us consider:

+00 . k (R\/a+ b x2 )
| eamdx where glx) = x™ .
0 ( a—l—bx2)
. B . d " [sin(z) A z (n+j) 1
M=) (Z@.}Z) R R 9 ¥ e e
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Integration by Parts & Transformed Integrals

/ " g0 (0dx = (-1)° / g0 [(jlx)k (S"‘X(X))] .

Integration by parts with respect to the operator x dx:

[ i = (0 e () (32) :OO
=1 /Om [(ij> (xAlg(X))] [(XSXYI (smx(X))] X

Integrating by parts X\ times:

/0+°° f(x)dx = /0+°° [();L)A (X’\lg(x)>] sin(x) dx.

Hassan Safouhi 12 / 30



Integration by Parts & Transformed Integrals

Integrands with jy(v x) 9% new integrands with sin(v x):

o0s

0005

004

b
How can we generalize this technique for any / f(x)dx ?
a
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The Slevinsky-Safouhi formulae (SSF)
Let us determine the k' derivatives of H(x) = x3 f(x?):

(i) H(x) =3x% f(x*) + 2x* f'(x?).

<£<>2 H(x) = 6x f(Xz)+(6X3+8X3)f/(x2)—|-4x5 f”(x2),

d
If we consider x 3H(x) = f(x?) and apply the operator e
xdx

<d> k (=3 H(x)) = 2% FI)(x2).

xdx

k
For T(x) = x?f(In(x)) : <xjx> (x2 T(x)) = %) (In(x)).

q\ i
= i —n ?
Can we express <dx> F(x) in terms of (x’"dx) (x7"F(x))?
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The Slevinsky-Safouhi formulae (SSF)

Theorem [Slevinsky & Safouhi 2009] The SSF | for any arbitrary
(o, B, m, n) is given by:

k k i
(Xaddx> (X_BF(X))_z;A;( Xn—,3+i(m+1)—k(a+1) <Xn?dx> (X_nF(X)),
The coefficients are given by [N = (n— 3 — (k — 1)(a + 1))]:
1 for i=k
A"k{NA‘k’1 for i=0, k>0
(N+i(m+1))A,_, +AL for 0<i<k

Moreover, for m # —1:
L (1) (= v 4 j(m+ 1) — (k= 1)+ 1))kpurs

- Jz_% (m+1)7j1 (i —))!
The SSF Il corresponds to the (a, 8, m,n) = (0,0,1,0). O
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Reformulized Integration by Parts

Let f(x) be integrable on [a, b] and have the general form:

f(x) = Go(x)Ho(x)w(x) with w(x)# 0 on (a,b).

Let the functionals G;(x) and H;(x) be defined by:

Gi(x) = (~1)' (W(Xd)dx>' Go(x) and Hi(x) = (W(f)dx)/ Ho(x).

b
If f(x) € C™|a, b] then / f(x)dx has the equivalent representation:

n—1
/ Gi(x)Hp1(x /G Yw(x)dx.

/=0
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Bessel Integral

The integral that follows appeared in Numerical Recipes:

b x 00
I = /o e Jo(x)dx = /0 w(x) Go(x) Ho(x) dx,

w(x) =x, Go(x) = X2:_ 1 and Ho(x) = Jo(x).
i
Gi(x) = (x2i-ll|)’+1 and  H(x) = x' Ji(x).

Using the generalized S, and SSF 1, we obtain the equivalent
representations:

-1 /‘X +1 o] o) Xn+1
— n
Il - g_o X2 T 1 o2 L 1V+1 J/+1(X) . + 2" n! /; W Jn(X) dx

- 0 Xn+1
= 2"nl 0 WJ,,(X) dx.
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Fresnel Integrals

The integrals are given by:
Ir(a,v) = / sin(vx?)dx and Z(a,v) = / cos(v x?) dx.

w(x) =x, Go(x)= % and  Hp(x) = sin(v x?).

sin(v x? — I7/2)

(2v)!
Using the generalized S, and SSF 1, we obtain the equivalent
representations for Z,(a, v):

(21)!
G/(X) = W and H/( )

- 2(21)! sin(wx? — @) (2n)! [ sin(vx? — %)d
Z /+1/| <21 T (4v)mn! X2n X
/:O
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Airy Functions

The Airy functions 7 Ai(z) are given by:

) X3
TIa(a,z) = / cos <3—i—zx) dx

_ / h [cos(zx) cos <X33> _ sin(zx) sin (X;)] dx.

2

By choosing the weight function w(x) = x=, we obtain:

—d ' _p COS cos (X3 Im
Gi(x) = <x2 dx) X (zx) and H(x) = an <3 — 2) )

Using the generalized S, and SSF 1, we obtain:

n—1 /+1 / 3 .
-1 N X [+1—i)rm

I4(a,z) = g (x3’)+2 E Aj(zx)' cos <3 +zx — (2)>

1=0 i

=0 a
0o M A i 3 o
+ (1)”/ Z”)E;)f)cos <);+zx (n 2I)W> dx.
4 =0
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The Twisted Tail

The twisted tail proposed in The SIAM 100-digit challenge:

T = /OOO cos(x ) dx = /OOO w(x) Go(x) Ho(x) dx,

1
— and Hp(x) = cos(x e¥)

w(x) = (14 x)e*, Go(x) = 1+ x)ex

The general form of Gj(x) is:

Pogxg =1
o~ (1+1)x pi(x) = 2+x
G/(X) = Wp,(x) Pzgi; = 9—|—8X—|—2X2

= 64+ 79x + 36x2 + 6x3

Hassan Safouhi 20 / 30



Reformulized Integration by Parts

Applying the first order transformation:

o0 o0 2
/ cos(x e¥)dx = / e o X sin(x &%) dx.
Jo 0

D
ML IR

T has the equivalent representations:

.

n—1

00 N B —p/(X) ei(HFl)X X m
/O COS(X € )dX = Iz_; W COos (Xe - (/ + 1)5) 0
* Palx) ™ x_ nm
+ /O T cos <xe 5 )dX-
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Numerical Results

T has an asymptotic expansion given by:

[e.e]

chwweﬂerv§:mw)ws«/+Dg)

=0

Table: Computing the twisted tail 7 using the asymptotic expansion. Calculation
performed using Maple.

/ T
130 .323 367 431 677
180 323 367 431 677 778
220 323 367 431 677 778 761
270 323 367 431 677 778 761 399
320 323 367 431 677 778 761 399 370
370 323 367 431 677 778 761 399 370 087

430 323 367 431 677 778 761 399 370 087 952
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The Staircase Algorithm

Approximations to fab f(x) dx take the following form:

@ For a < xp < b, initialize the first approximation Sp:
X0
So= [ Golx) Hol) w(x)
a
Then, we consider fxlz Go(x) Ho(x) w(x) dx:

/b Go(x) Ho(x) w(x) dx = Go(x

/G1 ) Hh (x) w(x) dx

@ Fora<xp <x3 <b, we deﬁne the second approximation by:

/0 G1(x) H (x) w(x) dx.
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The Staircase Algorithm

Then, we consider fxlz G1(x) Hi(x) w(x)dx:

b
/Gl(x)Hl( w(x)dx = Gu(x

/G2 ) Ho () w(x) dx.

@ For x; < xp < b, we define the third approximation S by:

S5 =5+ Gl / G2 H2 (X) dx.

e For the sequence {x/}]_; satisfying X1 < x; < b, define:

/G, ) Hy(x) w(x) dx.

The approximations to b £(x) dx form the sequence {S/}]_,.
a 1=0

Sp = S-1+ G-i(x)
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Bessel Integral

Relative Error of the Staircase Algorithm applied to I‘.

Relative Error
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Figure: xy = 2w(/ + 1)
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Fresnel Integrals

Relative Error of the Staircase Algorithm applied to I2.
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Airy Functions

Relative Error of the Staircase Algorithm applied to I4.
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Twisted Tail

Relative Error of the Staircase Algorithm applied to Is‘
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Conclusion

@ The Slevinsky-Safouhi formulae for differentiation present an
important tool in numerical integration.

o Reformulized integration by parts can be very useful in numerical
integration and can be applied to a larger class of integrals.

@ Asymptotic expansions, more favourable from a computational point
of view.

e Transformed integrals have better convergence / asymptotic
properties.

@ The staircase algorithm is robust and allow for accurate numerical
evaluation
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