Quasicrossings of the energy terms in the two-Coulomb-centre problem

M. Hnatič ${ }^{1,2}$, V.M.Khmara ${ }^{2}$, O.K.Reity ${ }^{3}$, V.Yu.Lazur ${ }^{3}$
${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
${ }^{2}$ Faculty of Science, P. J. Šafárik University in Košice
${ }^{3}$ Department of Theoretical Physics, Uzhhorod National University, Uzhhorod, Ukraine

The International Conference "Mathematical Modeling and Computational Physics, 2017" (MMCP 2017)

3-7.07.2017, Dubna, Russia

Outline

- Relevance for the adiabatic theory of atom collisions and the unclearness of the available energy splitting formulas
- The wave functions of $Z_{1} e Z_{2}$ system
- Energy splitting: comparison of results
- Conclusions

The adiabatic approximation in atomic collision theory

In adiabatic approximation ($v_{n} \ll v_{e}$), solution of the Schrödinger equation

$$
\begin{equation*}
\hat{H}(\vec{R}) \Psi(\vec{r}, t)=i \frac{\partial \Psi}{\partial t} \tag{1}
\end{equation*}
$$

is usually represented in the form

$$
\begin{equation*}
\Psi(\vec{r}, t)=\sum_{p} g_{p}(t) \psi_{p}(\vec{r}, R) \exp \left(-i \int^{t} E_{p}\left(R\left(v t^{\prime}\right)\right) d t^{\prime}\right) \tag{2}
\end{equation*}
$$

leading to Born-Fock equations [1] for $g_{p}(t)$

$$
\begin{array}{r}
\frac{d g_{p}(t)}{d \tau}=\sum_{p^{\prime}}^{\prime}\left\langle\psi_{p}(\tau)\right| \frac{d}{d \tau}\left|\psi_{p^{\prime}}(\tau)\right\rangle \exp \left(\frac{i}{v} \int^{\tau} \Delta E_{p p^{\prime}}\left(\tau^{\prime}\right) d \tau^{\prime}\right) g_{p^{\prime}}\left(\tau^{\prime}\right) \\
\tau=v t, \quad \Delta E_{p p^{\prime}}\left(\tau^{\prime}\right)=E_{p}(\tau)-E_{p^{\prime}}(\tau)
\end{array}
$$

The inelastic transition cross section then

$$
\begin{equation*}
\sigma_{p q}=2 \pi \int_{0}^{\infty} \lim _{t \rightarrow \infty}\left|g_{p}(t)\right|^{2} d \rho \tag{3}
\end{equation*}
$$

[1] M. Born and V. A. Fock, Zeitschrift für Physik a Hadrons and Nuclei 51.3-4 (1928), pp. 165180.

The unclearness of the ΔE formulas

For the zeroth-order in R^{-1} approximation, different formulas for ΔE in the case of different ($Z_{1} \neq Z_{2}$) and equal ($Z_{1}=Z_{2}$) charges are available, obtained using different methods. In the simpler case of equal charges, using the Landau-Herring method, Chibisov \& Janev [2] have obtained

$$
\begin{equation*}
\Delta E \sim R^{2 n_{1}+2 n_{2}+m+1} e^{-\gamma R} . \tag{4}
\end{equation*}
$$

Komarov \& Slavyanov [3], using the comparison equation method, have found another expression

$$
\begin{equation*}
\Delta E \sim R^{2 n_{2}+m+1} e^{-\gamma R} . \tag{5}
\end{equation*}
$$

[2] M. Chibisov and R. Janev, Phys. Rep. 166 (1988), pp. 1-87.
[3] I.V. Komarov and S.Yu. Slavyanov, J. Phys. B 1 (1968), pp. 1066-72

The unclearness of the ΔE formulas. Different charges

For the case of different charges $\left(Z_{1} \neq Z_{2}\right)$, one can find three formulas obtained in terms of comparison equation. They can be represented by

$$
\begin{equation*}
\Delta E=T \delta\left(n_{2}, n_{2}^{\prime}, m, R\right) \tag{6}
\end{equation*}
$$

where $\delta \sim R^{n_{2}+n_{2}^{\prime}+m+1} e^{-\gamma R}$ is the so-called quantum number "splitting". Komarov \& Slavyanov [3], Power [4] and Ponomarev [5] proposed to determine T by different formulas

$$
\begin{gather*}
T_{K S}=2 \frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(n_{2}^{\prime}-n_{2}\right)^{3}}, \quad T_{\text {Pow }}=\frac{\partial E_{1}}{\partial n_{2}}+\frac{\partial E_{2}}{\partial n_{2}^{\prime}} \tag{7}\\
T_{\text {Pon }}=\frac{\partial E_{1} / \partial n_{2}}{\sqrt{1+\frac{\partial \beta}{\partial E_{1}} \frac{\partial E_{1}}{\partial n_{2}}}}+\frac{\partial E_{2} / \partial n_{2}^{\prime}}{\sqrt{1-\frac{\partial \beta}{\partial E_{2}} \frac{\partial E_{2}}{\partial n_{2}^{\prime}}}}, \quad \beta=\frac{Z_{2}-Z_{1}}{\gamma} \tag{8}
\end{gather*}
$$

[3] I.V. Komarov and S.Yu. Slavyanov, J. Phys. B 1 (1968), pp. 1066-72
[4] J.D. Power, Phil. Trans. Roy. Soc. London. Ser. A 274 (1973), p. 663
[5] L.I. Ponomarev, Sov. Phys.-JETP 28 (1969), pp. 971-5

Important coordinate system for this problem

The prolate spheroidal coordinate system:

$$
\begin{array}{lcr}
\xi=\frac{r_{1}+r_{2}}{R}, & \eta=\frac{r_{1}-r_{2}}{R}, & \phi=\arctan \frac{y}{x}, \tag{9}\\
\xi \in[1 ; \infty), & \eta \in[-1 ; 1], & \phi \in[0 ; 2 \pi)
\end{array}
$$

Important coordinate system for this problem

The prolate spheroidal coordinate system:

$$
\begin{array}{lcr}
\xi=\frac{r_{1}+r_{2}}{R}, & \eta=\frac{r_{1}-r_{2}}{R}, & \phi=\arctan \frac{y}{x}, \tag{9}\\
\xi \in[1 ; \infty), & \eta \in[-1 ; 1], & \phi \in[0 ; 2 \pi)
\end{array}
$$

Solution of the two-Coulomb-centre problem

The wave function after the separation of variables has the form

$$
\begin{equation*}
\Psi(\vec{r}, R)=\frac{U(\xi, R)}{\sqrt{\xi^{2}-1}} \frac{V(\eta, R)}{\sqrt{1-\eta^{2}}} \frac{e^{ \pm i m \phi}}{\sqrt{2 \pi}}=\frac{\psi(\xi, \eta, R)}{\sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}} \frac{e^{ \pm i m \phi}}{\sqrt{2 \pi}} \tag{10}
\end{equation*}
$$

Next, the shifted variables has been used:

$$
\begin{equation*}
\mu=\frac{R}{2}(\xi-1), \quad \mu \in[0, \infty), \quad \nu=\frac{R}{2}(1+\eta), \quad \nu \in[0, R] . \tag{11}
\end{equation*}
$$

For $\mu \ll R$ (near the internuclear axis) and $\nu \ll R$ (near the left atomic core) the perturbation theory was used:

$$
\begin{gathered}
\psi^{\text {pert }}(\mu, \nu)=C(R) U^{\text {pert }}(\mu) V^{\text {pert }}(\nu) \\
U^{\text {pert }}=f_{n_{1}}^{(0)}(\mu)+\sum_{p=1}^{3} \sum_{k=-p}^{p} c_{n_{1}+k}^{(p)}\left(R^{-p}\right) f_{n_{1}+k}^{(0)}(\mu) \\
V^{\text {pert }}=f_{n_{2}}^{(0)}(\nu)+\sum_{p=1}^{3} \sum_{k=-p}^{p} c_{n_{2}+k}^{(p)}\left(R^{-p}\right) f_{n_{2}+k}^{(0)}(\nu) \\
f_{n_{i}}^{(0)}(x)=\left(\frac{\left(n_{i}+m\right)!}{n_{i}!(m!)^{2}\left(2 n_{i}+m+1\right)}\right)^{1 / 2}(2 \gamma x)^{(m+1) / 2} e^{-\gamma x} F\left(-n_{i}, m+1,2 \gamma x\right)
\end{gathered}
$$

Solution of the two-Coulomb-centre problem

In the internuclear region for the quasiangular part of the wave function a WKB approximation has been used $(\hbar=1)$:

$$
\begin{equation*}
V^{q u a s}=\frac{C_{0}}{\sqrt{q}} \exp \left[-\int_{\nu_{2}}^{\nu} q d \nu^{\prime}+S_{1}+S_{2}\right] \tag{12}
\end{equation*}
$$

where the quasiclassical corrections S_{1} and S_{2} are determined by the formulae

$$
\begin{align*}
& S_{1}=-\frac{\tilde{Z}_{1}}{4 \gamma^{3} \nu^{2}}\left(1+\frac{17 \tilde{Z}_{1}}{6 \gamma^{2} \nu}\right)+\frac{\tilde{Z}_{2}}{4 \gamma^{3}(R-\nu)^{2}}\left(1+\frac{17 \tilde{Z}_{2}}{6 \gamma^{2}(R-\nu)}\right) \\
& +\frac{m^{2}-1}{16 \gamma^{3}}\left(\frac{1}{\nu^{3}}+\frac{1}{\nu^{2} R}-\frac{1}{R(R-\nu)^{2}}-\frac{1}{(R-\nu)^{3}}\right)+\frac{\tilde{Z}_{1} \tilde{Z}_{2}}{2 \gamma^{5} R^{3}} \ln \frac{\nu}{R-\nu} \\
& +\frac{\tilde{Z}_{1} \tilde{Z}_{2}}{4 \gamma^{5} R}\left(\frac{3}{(R-\nu)^{2}}-\frac{3}{\nu^{2}}+\frac{1}{R}\left[\frac{1}{R-\nu}-\frac{1}{\nu}\right]\right)+C_{1} \tag{13}\\
& S_{2}=\frac{\tilde{Z}_{1}}{4 \gamma^{4} \nu^{3}}+\frac{\tilde{Z}_{2}}{4 \gamma^{4}(R-\nu)^{3}}+C_{2} \tag{14}
\end{align*}
$$

Solution of the two-Coulomb-centre problem

The final expression for two-Coulomb-centre wave function ψ of $Z_{1} e Z_{2}$ system has the form

$$
\begin{equation*}
\Psi(\vec{r}, R)=C(R) \frac{U^{\text {pert }}(\mu, R)}{\sqrt{\xi^{2}-1}} \frac{V^{\text {quas }}(\nu, R)}{\sqrt{1-\eta^{2}}} \frac{e^{ \pm i m \phi}}{\sqrt{2 \pi}} \tag{15}
\end{equation*}
$$

This wave function has been used to calculate the exchange energy splitting $\left(A_{i}=2 n_{i}+m+1, A_{i}^{\prime}=2 n_{i}^{\prime}+m+1\right)$:

$$
\begin{align*}
& \Delta E=\oint_{S}\left(\Psi_{l} \vec{\nabla} \Psi_{\|}-\Psi_{I \prime} \vec{\nabla} \Psi_{l}\right) \overrightarrow{S S}=\frac{\left.2 \gamma^{2}(-1)^{n_{2}+n_{2}^{\prime}}(2 \gamma R)\right)^{n_{2}+n_{2}^{\prime}+m+1} e^{-\gamma R}}{\left[n n^{\prime} n_{2}!\left(n_{n}+m\right)!n_{2}^{\prime}!\left(n_{2}^{\prime}+m\right)!\right]^{1 / 2}} \times \\
& \left\{1-\frac{1}{2 \gamma R}\left[\frac{A_{2}^{2}+A_{2}^{\prime 2}}{4}+A_{2} A_{2}^{\prime}+\frac{1-m^{2}}{2}\right]-\frac{A_{2}+A_{2}^{\prime}}{2 \gamma R}-\frac{A_{1}}{2 \gamma^{2} R}\left(\frac{Z_{1}}{n}+\frac{Z_{2}}{n^{\prime}}\right)\right. \\
& +\frac{\left[A_{2}^{2}+A_{2}^{\prime 2}+4 A_{2} A_{2}^{\prime}+2\left(1-m^{2}\right)\right]^{2}}{128 \gamma^{2} R^{2}}+\frac{A_{2}^{3}+A_{2}^{\prime 3}+\left(A_{2} A_{2}^{\prime}-4 A_{1}+2 m^{2}-6\right)\left(A_{2}+A_{2}^{\prime}\right)}{32 \gamma^{2} R^{2}} \\
& \left.\quad+\frac{A_{1}\left(3 A_{1}+1-m^{2}\right)}{4 \gamma^{2} R^{2}}+\frac{\left(A_{1}-1\right)\left(A_{2}+A_{2}^{\prime}\right)^{2}+2 A_{2} A_{2}^{\prime}\left(A_{1}-2\right)}{8 \gamma^{2} R^{2}}\right\} . \tag{16}
\end{align*}
$$

Energy splitting: comparison of results

Table: Adiabatic energy splittings ΔE at quasicrossing points R_{c} in the system $\left(p, e, Z_{2}\right) ; a(-b)$ stands for $a \cdot 10^{-b}$

Z_{2}	$(N / m)-\left(N^{\prime} I^{\prime} m^{\prime}\right)$	R_{c}	ΔE	$\Delta E_{\text {Pow }}[4]$	$\Delta E_{\text {num }}[6]$	$\Delta E_{B}[7]$
4	$(4,3,0)-(3,2,0)$	7.76	$6.66(-2)$	$6.56(-2)$	$6.94(-2)$	-
5	$(5,4,0)-(4,3,0)$	12.92	$4.07(-3)$	$6.09(-3)$	$4.25(-3)$	$4.16(-3)$
6	$(6,5,0)-(5,4,0)$	21.4	$2.40(-5)$	$3.37(-5)$	-	$2.41(-5)$
7	$(7,6,0)-(6,5,0)$	31.9	$2.06(-8)$	$2.44(-8)$	-	$2.14(-8)$
8	$(8,7,0)-(7,6,0)$	44.3	$3.04(-12)$	$4.51(-12)$	-	$2.88(-12)$

[4] J.D. Power, Phil. Trans. Roy. Soc. London. Ser. A 274, 663 (1973).
[6] I.V. Komarov and N.F. Truskova, JINR Report No. P4-11445, (1978).
[7] A.A. Bogush and V.S. Otchik, J. Phys. A 30, 559 (1997).

Conclusions

- Using fully consisted scheme, the asymptotic wave functions for the $Z_{1} e Z_{2}$ problem has been obtained
- The energy splitting ΔE at the psedocrossing points was calculated.
- A good agreement of our results for ΔE with the numerical results has been obtained.

Thank you for attention

