
Quasicrossings of the energy terms in the
two-Coulomb-centre problem
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The adiabatic approximation in atomic collision theory

In adiabatic approximation (vn � ve), solution of the Schrödinger
equation

Ĥ(~R)Ψ(~r , t) = i
∂Ψ

∂t
(1)

is usually represented in the form

Ψ(~r , t) =
∑
p

gp(t)ψp(~r ,R) exp

(
−i
∫ t

Ep (R(vt ′)) dt ′
)
, (2)

leading to Born-Fock equations [1] for gp(t)

dgp(t)

dτ
=
∑
p′

′
〈
ψp(τ)

∣∣∣∣ d

dτ

∣∣∣∣ψp′(τ)

〉
exp

(
i

v

∫ τ

∆Ep p′(τ
′) dτ ′

)
gp′(τ

′),

τ = v t, ∆Ep p′(τ
′) = Ep(τ)− Ep′(τ),

The inelastic transition cross section then

σpq = 2π

∫ ∞
0

lim
t→∞
|gp(t)|2dρ. (3)

[1] M. Born and V. A. Fock, Zeitschrift für Physik a Hadrons and Nuclei 51.3-4
(1928), pp. 165180.
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The unclearness of the ∆E formulas

For the zeroth-order in R−1 approximation, different formulas for ∆E in
the case of different (Z1 6= Z2) and equal (Z1 = Z2) charges are available,
obtained using different methods. In the simpler case of equal charges,
using the Landau-Herring method, Chibisov & Janev [2] have obtained

∆E ∼ R2n1+2n2+m+1e−γR . (4)

Komarov & Slavyanov [3], using the comparison equation method, have
found another expression

∆E ∼ R2n2+m+1e−γR . (5)

[2] M. Chibisov and R. Janev, Phys. Rep. 166 (1988), pp. 1–87.
[3] I.V. Komarov and S.Yu. Slavyanov, J. Phys. B 1 (1968), pp. 1066–72
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The unclearness of the ∆E formulas. Different charges

For the case of different charges (Z1 6= Z2), one can find three formulas
obtained in terms of comparison equation. They can be represented by

∆E = T δ(n2, n
′
2,m,R), (6)

where δ ∼ Rn2+n′2+m+1e−γR is the so-called quantum number “splitting”.
Komarov & Slavyanov [3], Power [4] and Ponomarev [5] proposed to
determine T by different formulas

TKS = 2
(Z2 − Z1)2

(n′2 − n2)3
, TPow =

∂E1

∂n2
+
∂E2

∂n′2
(7)

TPon =
∂E1/∂n2√
1 + ∂β

∂E1

∂E1

∂n2

+
∂E2/∂n

′
2√

1− ∂β
∂E2

∂E2

∂n′2

, β =
Z2 − Z1

γ
(8)

[3] I.V. Komarov and S.Yu. Slavyanov, J. Phys. B 1 (1968), pp. 1066–72
[4] J.D. Power, Phil. Trans. Roy. Soc. London. Ser. A 274 (1973), p. 663
[5] L.I. Ponomarev, Sov. Phys.–JETP 28 (1969), pp. 971–5
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Important coordinate system for this problem

The prolate spheroidal coordinate system:

ξ =
r1 + r2

R
, η =

r1 − r2
R

, φ = arctan
y

x
, (9)

ξ ∈ [1;∞) , η ∈ [−1; 1] , φ ∈ [0; 2π)
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Solution of the two-Coulomb-centre problem

The wave function after the separation of variables has the form

Ψ (~r ,R) =
U (ξ,R)√
ξ2 − 1

V (η,R)√
1− η2

e±imφ√
2π

=
ψ (ξ, η,R)√

(ξ2 − 1)(1− η2)

e±imφ√
2π

. (10)

Next, the shifted variables has been used:

µ =
R

2
(ξ − 1) , µ ∈ [0,∞) , ν =

R

2
(1 + η) , ν ∈ [0,R] . (11)

For µ� R (near the internuclear axis) and ν � R (near the left atomic
core) the perturbation theory was used:

ψpert(µ, ν) = C (R)Upert(µ)V pert(ν),

Upert = f
(0)
n1 (µ) +

∑3
p=1

∑p
k=−p c

(p)
n1+k(R−p)f

(0)
n1+k(µ),

V pert = f
(0)
n2 (ν) +

∑3
p=1

∑p
k=−p c

(p)
n2+k(R−p)f

(0)
n2+k(ν),

f
(0)
ni (x) =

(
(ni+m)!

ni !(m!)2(2ni+m+1)

)1/2

(2γx)(m+1)/2e−γxF (−ni , m + 1, 2γx).
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Solution of the two-Coulomb-centre problem

In the internuclear region for the quasiangular part of the wave function a
WKB approximation has been used (~ = 1):

V quas =
C0√
q

exp

[
−
∫ ν

ν2

qdν′ + S1 + S2

]
(12)

where the quasiclassical corrections S1 and S2 are determined by the
formulae

S1 = − Z̃1

4γ3ν2

(
1 +

17Z̃1

6γ2ν

)
+

Z̃2

4γ3(R − ν)2

(
1 +

17Z̃2

6γ2(R − ν)

)

+
m2 − 1

16γ3

(
1

ν3
+

1

ν2R
− 1

R(R − ν)2
− 1

(R − ν)3

)
+

Z̃1Z̃2

2γ5R3
ln

ν

R − ν

+
Z̃1Z̃2

4γ5R

(
3

(R − ν)2
− 3

ν2
+

1

R

[
1

R − ν
− 1

ν

])
+ C1, (13)

S2 =
Z̃1

4γ4ν3
+

Z̃2

4γ4(R − ν)3
+ C2. (14)
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Solution of the two-Coulomb-centre problem

The final expression for two-Coulomb-centre wave function Ψ of Z1eZ2

system has the form

Ψ (~r ,R) = C (R)
Upert (µ,R)√

ξ2 − 1

V quas (ν,R)√
1− η2

e±imφ√
2π

. (15)

This wave function has been used to calculate the exchange energy
splitting (Ai = 2ni + m + 1, A′i = 2n′i + m + 1):

∆E =
∮
S

(
ΨI
~∇ΨII −ΨII

~∇ΨI

)
~dS = 2γ2(−1)n2+n′2 (2γR)n2+n′2+m+1e−γR

[n n′ n2! (n2+m)! n′2! (n′2+m)!]1/2 ×{
1− 1

2γR

[
A2

2+A′22

4 + A2A
′
2 + 1−m2

2

]
− A2+A′2

2γR −
A1

2γ2R

(
Z1

n + Z2

n′

)
+

[A2
2+A′22 +4A2A

′
2+2(1−m2)]2

128γ2R2 +
A3

2+A′32 +(A2A
′
2−4A1+2m2−6)(A2+A′2)

32γ2R2

+A1(3A1+1−m2)
4γ2R2 +

(A1−1)(A2+A′2)2+2A2A
′
2(A1−2)

8γ2R2

}
. (16)
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Energy splitting: comparison of results

Table: Adiabatic energy splittings ∆E at quasicrossing points Rc in the system
(p, e,Z2); a(−b) stands for a · 10−b

Z2 (Nlm) – (N ′l ′m′) Rc ∆E ∆EPow [4] ∆Enum [6] ∆EB [7]

4 (4, 3, 0) – (3, 2, 0) 7.76 6.66(−2) 6.56(−2) 6.94(−2) −
5 (5, 4, 0) – (4, 3, 0) 12.92 4.07(−3) 6.09(−3) 4.25(−3) 4.16(−3)
6 (6, 5, 0) – (5, 4, 0) 21.4 2.40(−5) 3.37(−5) − 2.41(−5)
7 (7, 6, 0) – (6, 5, 0) 31.9 2.06(−8) 2.44(−8) − 2.14(−8)
8 (8, 7, 0) – (7, 6, 0) 44.3 3.04(−12) 4.51(−12) − 2.88(−12)

[4] J.D. Power, Phil. Trans. Roy. Soc. London. Ser. A 274, 663 (1973).
[6] I.V. Komarov and N.F. Truskova, JINR Report No. P4-11445, (1978).
[7] A.A. Bogush and V.S. Otchik, J. Phys. A 30, 559 (1997).
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Conclusions

I Using fully consisted scheme, the asymptotic wave functions for the
Z1eZ2 problem has been obtained

I The energy splitting ∆E at the psedocrossing points was calculated.

I A good agreement of our results for ∆E with the numerical results
has been obtained.
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Thank you for attention
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