A computational algorithm for covariant series expansions in general relativity

Ivan Potashov and Alexander Tsirulev*

Faculty of Mathematics
Tver State University

Mathematical Modeling and Computational Physics

$$
2017
$$

References

P. Mukhopadhyay All order covariant tubular expansion Reviews in Math. Phys., 26, No 1, 1350019, 12pp, 2013 (http://arxiv.org/abs/1203.1151)

E U. Müller, C. Schubert, E.M. Anton A closed formula for Riemann normal coordinate expansion Gen. Relativ. and Gravitation, 1, pp. 1759-1765, 1999

R A. N. Tsirulev Analytic continuation of tensor fields along geodesics by covariant Taylor series Theor. and Math. Phys, 102, No 3, pp. 245-250, 1995 (Translation from Russian) DOI: 10.1007/BF01017874

Normal neighborhood of a submanifold

A real analytic manifold $H, \operatorname{dim} H=n+m, \quad n>m \geqslant 0$
A connected parallelizable submanifold $M, \operatorname{dim} M=m$ If $\operatorname{dim} M=m=0$ then M is a point on H
$p \in M, \quad T_{p}(H)=T_{p}(M) \oplus O_{p}, \quad X=X^{i} \mathrm{e}_{i}=X^{\alpha} \mathrm{e}_{\alpha}+X^{a} \mathrm{e}_{a}$
The Latin indices i, j, \ldots run from 1 to $n+m$: $\quad T_{p}(H)$
The Greek indices α, β, \ldots run from 1 to n :
The Latin indices a, b, \ldots run from $m+1$ to $n+m$: $T_{p}(M)$
A linear connection ∇ on $H: \quad \nabla_{k}=\nabla_{e_{k}}, \quad \nabla_{i} e_{j}=\Gamma_{i j}^{k} e_{k}$

The exponential map: $\gamma_{X}(0)=p, \gamma_{X}(1)=q$ ——A $\begin{aligned} & \begin{array}{l}p \in M, X \in O_{p} \\ O_{p}=\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle \\ T_{p}(M)=\left\langle\mathrm{e}_{3}\right\rangle\end{array} \\ & \gamma_{X} \text { is a geodesic on } H \\ & \text { in the direction of } X \\ & \text { starting at } p \in M\end{aligned}$

At each point $p \in M$ we choose a basis $\left\{\mathrm{e}_{i}\right\}_{1}^{m+n}$ such that the vectors $\left\{\mathrm{e}_{a}\right\}_{m+1}^{m+n}$ are tangent to M and the vectors $\left\{\mathrm{e}_{a}\right\}_{1}^{n}$ are transverse to M

General form of the covariant expansion I

$$
\begin{aligned}
&\left(Q_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}\right)_{q}=\sum_{\sigma+|\mu|+|\nu| \geq 0} \frac{1}{\sigma!} X^{\gamma_{1}} \ldots X^{\gamma_{\sigma}}\left(Q_{k_{1} \ldots k_{r} ; \gamma_{1} \ldots \gamma_{\sigma}}^{l_{1} \ldots l_{s}}\right)_{p} \times \\
& \times \underset{\left(\mu_{1}\right)^{1}}{u_{1}} \ldots \underset{\left(\mu_{r}\right)}{k_{1}} u_{\left(\nu_{1}\right)}^{i_{r}} i_{r}^{i_{r}} v_{\left(l_{1}\right.}^{l_{1}} \ldots \underset{\left(\nu_{s}\right)}{i_{s}}
\end{aligned}
$$

$$
\sigma, \mu_{1}, \ldots, \mu_{r}, \nu_{1}, \ldots, \nu_{s} \geq 0, \quad|\mu|=\mu_{1}+\ldots+\mu_{r}, \quad|\nu|=\nu_{1}+\ldots+\nu_{s},
$$

$$
\underset{(\mu)^{i}}{v_{i}^{k}}=-\sum_{\sigma=1}^{\mu} \underset{(\mu-\sigma)^{l}}{v} \underset{(\sigma)^{k}}{u_{i}^{l}}, \quad \mu \geq 1
$$

$\underset{(0)^{i}}{u^{k}}=\underset{(0)^{i}}{v}=\delta_{i}^{k}, \underset{(1)^{\alpha}}{u^{k}}=\frac{1}{2} X^{\beta}\left(T_{\beta \alpha}^{k}\right)_{p}, \underset{(1)^{a}}{u^{k}}=X^{\beta}\left(\Gamma_{\beta a}^{k}+T_{\beta a}^{k}\right)_{p}$,

General form of the covariant expansion II

$$
\begin{aligned}
& u_{(\mu)^{i}}^{u^{k}=} \\
& \frac{2}{2 \mu+\varepsilon(i)+1} \sum_{\sigma=1}^{\mu} \frac{1}{(\sigma-1)!} X^{\alpha_{1}} \ldots X^{\alpha_{\sigma}}\left(T_{\alpha_{1} l}^{k} ; \alpha_{2} \ldots \alpha_{\sigma}\right)_{p}{ }_{(\mu-\sigma)}^{u}{ }^{l}+ \\
& \frac{1}{\mu(\mu+\varepsilon(i))} \sum_{\sigma=2}^{\mu} \frac{1}{(\sigma-2)!} X^{\alpha_{1}} \ldots X^{\alpha_{\sigma}}\left(R_{\alpha_{1} \alpha_{2} l ; \alpha_{3} \ldots \alpha_{\sigma}}^{k}\right)_{p}^{(\mu-\sigma)}{ }^{u}, \\
& \quad{ }^{l}, \\
& \quad 2, \quad \varepsilon(\alpha)=1, \quad \varepsilon(a)=-1,
\end{aligned}
$$

The expansion of a Riemannian metric

$$
\begin{aligned}
& \left(g_{i k}\right)_{q}=\sum_{\mu+\nu \geq 0}\left(g_{j l}\right)_{p} u_{(\mu))^{j}{ }^{j} u^{l}{ }_{k}^{l},}, \\
& \underset{(0)}{u_{i}^{k}}=\delta_{i}^{k}, \quad \underset{(1)^{\alpha}}{u^{k}}=0, \underset{(1)^{a}}{u^{k}}=X^{\beta}\left(\Gamma_{\beta a}^{k}\right)_{p}, \\
& \underset{(\mu)^{k}}{u_{i}}= \\
& \frac{1}{\mu(\mu+\varepsilon(i))} \sum_{\sigma=2}^{\mu} \frac{1}{(\sigma-2)!} X^{\alpha_{1}} \ldots X^{\alpha_{\sigma}}\left(R_{\alpha_{1} \alpha_{2} l ; \alpha_{3} \ldots \alpha_{\sigma}}^{k}\right)_{p} \underset{(\mu-\sigma)}{u}{ }^{l}, \\
& \mu \geq 2, \quad \varepsilon(\alpha)=1, \quad \varepsilon(a)=-1,
\end{aligned}
$$

Some problems in the general statement

- Spacetime metric is known. It is necessary to find the metric in some domain in normal coordinates (eg., in the tube neighborhood of the worldline of a particle).
- Spacetime metric has a high-dimensional isometry group (eg., in a spherically symmetric spacetime). It is necessary to solve the Cauchy problem with initial data on some spacelike or null hypersurface using the covariant expansions.
- It is necessary to find the formal covariant power series solution of the Einstein equations in a spacetime with some additional conditions (eg., in static or stationary spacetimes).

Outline of the algorithm

Time computational complexity

Let N be the degree of a monomial.
An arbitrary monomial has the form $\left(X_{1}\right)^{A_{1}}\left(X^{2}\right)^{A_{2}} \ldots\left(X^{n}\right) A_{n}, \quad A_{1}+A_{2}+\ldots+A_{n}=N$,
The computational complexity of the algorithm is not worse than exponential, $O\left(2^{N}\right)$, in N. This estimation can be obtained by using the Hardy-Ramanujan formula for the number of partitions of N.

The computational complexity of the algorithm is factorial, $O(n!)$, in the dimension n of O_{p}.

