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Normal neighborhood of a submanifold
A real analytic manifold H, dimH=n+m, n>m>0

A connected parallelizable submanifold M , dimM=m

If dimM=m=0 then M is a point on H

p ∈M , Tp(H)=Tp(M)⊕Op , X=X iei=Xαeα+Xaea

The Latin indices i, j, . . . run from 1 to n+m: Tp(H)

The Greek indices α, β, . . . run from 1 to n: Op

The Latin indices a, b, . . . run from m+1 to n+m: Tp(M)

A linear connection ∇ on H: ∇k = ∇ek, ∇iej = Γkijek



The exponential map: γ
X
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is a geodesic on H

in the direction of X
starting at p ∈M

At each point p ∈M we choose a basis {ei}m+n

1
such that

the vectors {ea}m+n

m+1
are tangent to M and

the vectors {ea}n1 are transverse to M



General form of the covariant expansion I
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General form of the covariant expansion II
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The expansion of a Riemannian metric
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Some problems in the general statement
I Spacetime metric is known. It is necessary to find the
metric in some domain in normal coordinates (eg., in
the tube neighborhood of the worldline of a particle).

I Spacetime metric has a high-dimensional isometry
group (eg., in a spherically symmetric spacetime). It
is necessary to solve the Cauchy problem with initial
data on some spacelike or null hypersurface using the
covariant expansions.

I It is necessary to find the formal covariant power
series solution of the Einstein equations in a
spacetime with some additional conditions (eg., in
static or stationary spacetimes).



Outline of the algorithm
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Time computational complexity
Let N be the degree of a monomial.
An arbitrary monomial has the form
(X1)

A1
(
X2
)A2 . . . (Xn)An, A1+A2+ . . .+An=N ,

The computational complexity of the algorithm is not
worse than exponential, O

(
2N
)
, in N . This estimation

can be obtained by using the Hardy –Ramanujan formula
for the number of partitions of N .

The computational complexity of the algorithm is
factorial, O(n!), in the dimension n of Op.


