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Multiscale simulations of neuronal receptors  
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Interdisciplinary research center, 
among the largest in Europe, 
focusing on the study and 
applications in the areas of health, 
neurobiology, information, 
environment, and energy 
 
About 1500 scientists (600 PhD‘s) 
 
 
 
 
 
  
 
 

Forschungszentrum Jülich  
(Jülich Research Centre)  
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Synaptic Neurotransmission  
Classic Synaptic Neurotransmission
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Figure 1-3. Classic synaptic neurotransmission. In classic synaptic neurotransmission, stimulation of a presynaptic neuron (e.g., by
neurotransmitters, light, drugs, hormones, nerve impulses) causes electrical impulses to be sent to its axon terminal. These electrical impulses
are then converted into chemical messengers and released to stimulate the receptors of a postsynaptic neuron. Thus, although
communication within a neuron can be electrical, communication between neurons is chemical.

Chapter 1: Chemical neurotransmission
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Synaptic Neurotransmission: 
G-protein coupled Receptors   
Classic Synaptic Neurotransmission
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Figure 1-3. Classic synaptic neurotransmission. In classic synaptic neurotransmission, stimulation of a presynaptic neuron (e.g., by
neurotransmitters, light, drugs, hormones, nerve impulses) causes electrical impulses to be sent to its axon terminal. These electrical impulses
are then converted into chemical messengers and released to stimulate the receptors of a postsynaptic neuron. Thus, although
communication within a neuron can be electrical, communication between neurons is chemical.

Chapter 1: Chemical neurotransmission

4

The	brain	as	sophis-cated	“chemical	soup”	

Stahl,		Essen-al	Psychopharmacology,	2013	
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Sta-s-cal	Mechanics	
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rate	constants	
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Physics-based	approaches	
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Biology-based	approaches	
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proteins	

To
ol

s 

highly scalable codes  for molecular simulation 
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Key Molecular events for 
neuronal function/dysfunction  
 
Designing ligands 
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G-protein Coupled Receptors 
(GPCRs) 
~3% 

of mammalian genes 
~80%  

signal transduction 
pathway  
across cell membrane   
> 30 % 

of marketed drugs 
Overington et al. 
Nat. Rev. Drug. Discov.  2006 
 

 
7 Helix fold 
 

Gα 

Gβ 
Gγ 

GTP 

GDP 

Nobel	Prize	in	Chemistry	2012	
Brian	Kobilka	(shared	with	Robert	J.	LeHowitz)	for	structural	studies	on	GPCRs	
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Agonist binding G protein coupling 
and nucleotide 

exchange 

Activated G 
protein subunits 
regulate effector 

proteins 
GTP hydrolysis 

and inactivation 
of Gα protein 

GPCR-G Protein Cycle 

G-protein Coupled Receptors 
(GPCRs) 
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GPCR structural biology 

~800 
members 

in the 
human 

genome.  
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GPCR structural biology 

~800 
members 

in the 
human 

genome.  
 

A2A-Adenosine		
receptor	

Simula)on	of	igand	binding	
(with	Prof.	Bauer,	FZJ)	
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Molecular dynamics  
Simulations on 
The hA2AR neuronal receptor 
  
 

PDBid:	3PWH	
Amber	force	field	
Microsecond	MD	
	

Cholesterol		33-50%	
Pfrieger,	Biochimica	et	Biophysica	Acta	
(BBA)-Biomembranes	2003	

Giulia	RosseL	(INM-9/JSC	-	
W1	Aachen)	
Ruiin	Cao,	with	Prof.	Bauer	
(INM-2)	
	and	Neumeier	(INM-5)		
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Effect of cholesterol  
  
 

Ruin	Cao	et	al.,	PlosONE	2015	
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Enhanced sampling 
for ligand poses 
and affinities 

	
A	couple	of	Metadynamics	
Reviews	from	our	group	
	
Leone	et	al.	M.	Curr.	Opin.	
Struct.	Biol.,	2010	
	
Biarnés	et	al.	.	J.	Comp.-Aided	
Mol.	Design,	2011,		
	
	

518 Introduction to Proteins: Structure, Function, and Motion

proteins are able to shift spontaneously between (at least) two different conformations, even 
in the absence of ligand.[6] Indeed, this phenomenon has been demonstrated experimentally 
by many studies (e.g., Ref. [7]). The MWC model could also explain allostery, a well-known 
phenomenon in which the binding of the substrate to the catalytic site of the enzyme is 
affected by ligand binding to a different site (e.g., Ref. [8–11]). As explained in Chapter 5, 
the theory underlying the MWC model has undergone some changes since it was first 
suggested, and the current thinking is that proteins shift spontaneously between multiple 

(a)

+

(b)

+

(c)

FIGURE 8.2 Schematic representation of three popular protein–ligand binding theories. (a) Fischer’s 
“lock and key” theory. The protein is represented as a blue sphere and the ligand as an orange shape. 
The ligand-binding site of the protein matches the ligand perfectly. (b) Koshland’s “induced fit” 
theory. The binding site fits the ligand generally. However, the fit is significantly improved follow-
ing the binding, due to ligand-induced conformational changes in the protein. (c) The “population 
shift” theory. The protein changes conformation constantly, with at least one of these conformations 
matching the ligand. The ligand selects this conformation by binding to it.
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Ligand poses and affinities  
of a high affinity ligand of  hA2AR  

ΔG0 (exp)=-13.2 kcal/mol
Guo et al. Mol. Pharm. 2016

ΔG0 (calc) ≈-13.9 (8) kcal/mol	

Cao	et	al,	PlosONE	2015,	submiVed		

D																																																												E	

A
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GPCR structural biology 

μ-Opioid	
receptor	
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Painkillers targeting the  µ-opioid 
receptor 
 

Binding free energy calculation 
(Alchemical transformation) 

MOP! HMP: 1.2±1.1 kcal/mol  
HMP! MOP: 0.8±0.8 kcal/mol Exp. 

0.4±0.3 kcal/mol 

Na+ 

Antagonist 

Morphine (MOP)             Hydromorphone (HMP) 

Agonists 

PDB: 4DKL 

Cong	et	al,	PlosONE	2015		
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Activation 

-biology:	apo	μOR	N1503.35A	CAM	
-enhanced	sampling:	REST2		

force	fields:	
•  AMBER99SB-ILDN	-	protein		
•  Slipids	–	membrane	
•  TIP3P	-	water	molecules	
	
	
•  PME	for	electrosta)cs	
•  NPT	ensemble		

•  REST2	:	20	ns	×	64	replicas	of	
MD	simula)ons		

•  Wang,	L.,	Friesner,	R.	A.	&	
Berne,	B.	J.	Replica	Exchange	
with	Solute	Scaling:	A	More	
Efficient	Version	of	Replica	
Exchange	with	Solute	
Tempering	(REST2).	The	
Journal	of	Physical	Chemistry	
B	115,	9431-9438.	
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Interconversion IS (95%)- AS (5% ) 
via few  intermediates (not shown) 

Cong	et	al,	Sci.	Rep.,	2017	
IS	 AS	
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1st/3rd Largest GPCR’s families: 
Bitter and odorant receptors 

		
Brain,	respiratory	system,	gastrointes-nal	tract,	
endocrine	system…		
gene)c	variability	on	taste/odorant	percep)on	
novel	therapies	
	
Soranzo	et	al			Curr	Biol		2005;	Wu	et	al.	PNAS	2002	
Singh	et	al,	BBRC	2011;	Lee	et	al.	J	Mol	Med	2014	
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Largest GPCR’s families: 
Bitter and odorant receptors 

TAS2R family  
25 members in humans 
recognizing hundreds of 

food compounds 

Others	(TAS2R38):	few	agonists	binding	
Some	(TAS2R46):	large		agonist	diversity	
access	control	“for		wrong	biVer	compounds?”	
	
	
	
Meyerhof	et	al.		PNAS	2010	
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Largest GPCR’s families: 
Bitter and odorant receptors 

TAS2R family  
25 members in humans 
recognizing hundreds of 

food compounds 

Predic-ng	binding	poses?	
1.   No	structural	informa-on		
2.   SI	with	templates	<20%	
3.   Only	molecular	biology	experiments	
							(Meyerhof’s	group)	
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Essays on wild-type and mutant 
bitter taste receptors 

		
TP=	#	true	posi-ves	,	FP=#	false	posi-ves		
	FN=	false	nega-ves		
	
PREC	=	TP	/	(TP+FP)		
REC	=	TP	/	(TP+FN)	
	
	

!
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1.  Available	Structural	Data	
2.  Evolu)onary	Informa)on	
3.  Sequence	based	structural/

func)onal	assessment	

Structural	Modeling	of	ligand/GPCR	
complexes	

Alejandro	GiorgeL	
	
Kamil	Khafizof		
	
	

Step #1: Bioinformatics  
+ docking  
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Step #1: Bioinformatics  
+ docking  
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Percentage sequence identity 

.	
.	

Twilight zone:  
undetectable homology 
(<20% sequence identity) 

20	 40	 60	 80	

Chothia & Lesk, EMBO J. 5 (1986) 823-826 

1.8 Å 

1.0 Å 

Confidence: 50% 

Confidence: 90% 

Fierro	et	al,	submiVed.	
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Step #2: Molecular Simulation  

side-chain orientation! 

MM E
ne

rg
y 

Configuration 

MM: all-atom 
CG: coarse-grained  

all-atom model                                  coarse grain model  

CG 

Ligand binding 
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Investigating structure, dynamics and 
energetics of proteins by molecular 
dynamics at at different levels of granularity 
(quantum-mechanical, all-atoms force field, 
coarse grain) 
!Combining different descriptions 
 
 
Coarse-grain/classical mechanics  

Hybrid methods 
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MM:	Region	of	interest	
(e.g.	protein	ac)ve	site)	
Atomis)c	force	field	(Gromos,	
Amber)	

CG:	Protein	frame	
Go-model	
(e.g.	Cα	backbone	atoms	only)	

Interface	region	
Atomis)c	force	field	coupled	to		
CG	

Hybrid Coarse-Grain/Molecular 
Mechanics simulations  



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

27 

  Test #1: A cytoplasmatic protein 
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Coarse grain/MD of TAS2R46 
And TASR38 in complex with 
agonists 
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Coarse grain/MD of TAS2R46/
Strychnine (Large ligand diversity) 

!
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‘Vestibular' binding site across 
GPCRs 
Muscarinic,		β2-
adrenergic	,	opioid	
receptors:	two	cavi-es	

Dror	et	al.	PNAS		2011,	Nature	2013	
Granier.	&	Kobilka,	Nat.	Chem.	Biol.		2012	
		

	alprenolol/β2-adrenergic	
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•  Predictions  consistent with   
more than 20 site-directed 
mutagenesis and functional 
calcium imaging experiments 

Marchiori et al. PLOS ONE 2013 

TAS2R8: Only one binding site  
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Modulating selectivity: from 2-state 
to 1-state binding 

Sandal	et	al,		
J.	Chem.	Theory	Comp.	2015	

Input:	sequence/
chemical	structure	
compound	

Ag
on

is
t	s
tr
uc
tu
ra
l	d
iv
er
si
ty
	



Co-funded by  
the European Union 

Slide SP6 Brain Simulation Platform – HBP 2nd Periodic Review – June 2016 
! !

SP6 

!
Co-funded by  

the European Union 

HBP 2nd Periodic Review 
October 2014 – March 2016 

End of 
Ramp-Up 

Phase 

33 

Click to edit Master title style 

• Click to edit Master text styles 

–  Second'level'
•  Third level 

–  Fourth level 

HBP Period 1 Review 
(Oct 2013 – Sep§ 2014) 

Molecular Dynamics (W6.3) 

Paolo Carloni 

German Research School 

Forschungszentrum Jülich 

26-28 Jan 2015 HBP Period 1 Review (Oct 2013 – Sep 2014) Slide 1 

Multi-scale molecular 
 simulation in the human brain 

project 



Co-funded by  
the European Union 

Slide SP6 Brain Simulation Platform – HBP 2nd Periodic Review – June 2016 
! !

SP6 
GPCRs-based signaling pathway involved 

in memory processes 

34 

§  Case study: Receptor induced 
cascades leading to activation of 
kinases and phosphatases,  
integrated into a neuron model 

   Proof of concept: 
https:/collab.humanbrainproject.eu/#/collab/489/
nav/5364).  

§  Molecular Dynamics 

-Input data for systems biology (at 
times not accessible from 
experiment) 

-Molecular details of neuronal 
cascades relevant for higher level 
models 

Nair, et al (2015) J Neuroscience 



Co-funded by  
the European Union 

Slide SP6 Brain Simulation Platform – HBP 2nd Periodic Review – June 2016 
! !

SP6 
Multi-scale molecular simulation and 

systems biology 
 

35 

	General	approach	for	
-kine-c	parameters	
-molecular	insights	

Coarse-grain 
R. Lavery (Lyon) 

M. Orozco (Barcelona) 

QM/MM approach 
P. Carloni  

U. Roethlisberger (EPFL) 
 

Brownian dynamics 
R. Wade (Heidelberg) 
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Investigating structure, dynamics and 
energetics of proteins by molecular 
dynamics at at different levels of granularity 
(quantum-mechanical, all-atoms force field, 
coarse grain) 
!Combining different descriptions 
 
 
 
Quantum mechanics/classical mechanics 
 

Hybrid methods 



QM/MM  simulations 
	

	

	

	

	

	

	

	

	

	

Villar-Pique et al., PNAS, 2016 

Copper(II) 
binding sites 

DNA pol enzymatic 
reaction 
Genna et al., 2016 
 
Spotlights of JACS 
publications 
2016, 138, 14507 
 
 
 

CPMD	code	
DFT		
BLYP,	BP,	B3LYP		XC	func-onals	
Basis	set:	PW	(90	Ry)	
Mar-ns	Troullier	pseudopoten-als	
Thermodynamic	integra-on,	
metadynamics	

Laio	et	al,	JCP	2002	
Dal	Peraro	et	al.	Curr	Op.	Str.	Biol.	2007	

Amber	Force	Field,	Gromos96	Code	

Mass	spectrometry		
(with	Modesto	Orozco)	

Arcella	et	al,	Angew.	Chem.	2015	
Li	et	al,	J.	Phys	Chem	LeV	2017	



        Hybrid  QM/MM molecular dynamics

Laio et al., JCP, 2002



hpc-leap.eu	

QM/MM Simulations 

39

•  Poor scalability –sampling  issues 

Problems: 

	Zhang	et	al.,	PNAS,	2012	

	6	to	8	RT	

3	Å	

Su
rf
ac
e	

Su
rf
ac
e	

The	distance	from	protons	to	the	interface	

Fr
ee
	e
ne

rg
y	
	

3	Å	

 CPMD calculation: Energetics of proton translocation    
 

S
up

er
co

m
pu
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hpc-leap.eu	

QM/MM Simulations 

40

•  Poor scalability –sampling  issues 
•  Limited number of available force-fields 
•  Proprietary GROMOS96 license 

Problems: 



hpc-leap.eu	

ü  Design the architecture of an interface 
ü  Design the protocol for data movement 
ü  Develop the communication library 
ü  Develop the QM/MM interface 

Coupling to GROMACS (http://www.gromacs.org/) 
ü  Writing the contributor manual 
ü  Going open-source 
ü  Performance and scaling optimizations 
ü  Adopting different model for electrostatics treatment 
 

New HPC-based Approach 



hpc-leap.eu	42

•  Prof.	Ursula	Röthlisberger		
EPFL,	Lausanne	

•  Dr.	Teodoro	Laino		
						IBM,	Zürich	
•  Dr.	Valery	Weber		
						IBM,	Zürich	
•  Dr.	Alessandro	Curioni		

IBM,	Zürich	
•  Erik	Lindahl	
					KTH,	Stockholm	

•  Viacheslav	Bolnykh	
						RWTH-Aachen	
•  Emiliano	Ippoli)		
						FZJ,	Juelich	
•  Dr.	Jógvan	Magnus	Hausgaard	Olsen		

University	of	Southern	Denmark	
•  Dr.	Simone	Meloni		

University	La	Sapienza	
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Multiscale simulations of 
neuronal receptors 

CG 
CG/MM 

 

MD 
QM/MM 

Brownian dynamics 
 

1	μm	

AC	
GPCR	

ATP	 cAMP	

outside	

inside	

GPCR	

Gi	
Golf	

êcAMP	
écAMP	

dopamine	 acetylcholine	

Systems	Biology		

molecule	 neuron	



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 

44 

 
Vania Calandrini, Alejandro Giorgetti, Massimo Sandal, Xevi 
Biarnes, Michael Leguebe, Giulia Rossetti, Mercedes Alfonso-
Prieto, Luca Maggi, Xiaojing Cong, Fabrizio Fierro  
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Neurodegenerative diseases 

Gradual	and	progressive	loss	of	neural	cells,		leading	to	nervous	
system	dysfunc-on	
	
About	600	NDs,	50	million	US		individuals	affected	each	year.	
		
$100	billion	per	year	is	spent	on	Alzheimer	disease	(AD)	alone	
(2005)	-		immense	emo-onal	burden	on	pa-ents	and		their	rela-ves	
	
As	the	number	of	elderly	ci-zens	increases,	these	costs	to	society	
also	will	increase.	
	
Brown	et	al,	Environ	Health	Perspect.	2005;113,	1250	
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Synthesis	

Unfolded	

Intermediate	

Na-ve	

Fibril	forming	
Pathway	

Prefibrillar	
species	

Amyloidogenic	
intermediate	

n 

Amyloid	
Fibril	

Deposit	

Folding		
Pathway	

Protein fibril formation: Hallmark of 
neurodegenerative diseases 
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Huntington’s disease 

•  Inherited  fatal neurodegenerative 
 disorder 

•  Over 10,000 people in the 
  western world 

 
– Uncontrolled mood swings 

•  No treatment 
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RNA as a target? 
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§  5 9 n u c l e o b a s e T A R 
act ivates elongat ion of 
t r a n s c r i p t i o n o f  t h e 
integrated virus by forming a 
complex with the virally 
encoded HIV-1 Tat protein 
and with human cyclin T1 

§    

Test system: 
HIV-1 transactivation responsive RNA (TAR) 

the fly” a matching TAR conformer as it is spontaneously, yet
transiently populated in free TAR,22 suggesting that such
ligands use the conformational selection mechanisms for
molecular recognition of TAR (Table S1).13,18−21

In order to understand TAR/ligand recognition mechanism,
an in-depth characterization of the internal motions of this
RNA is necessary,23−25 including an understanding of the
interplay among relevant time scales. Conformational exchange
in TAR has been shown to occur over a very wide range of
rates, from ps to ms. As a consequence of this breadth of
motional rates, probing experimentally the mechanism of
recognition is very challenging.26−28 On the one hand, the
insight provided by NMR in the solution state (solNMR) is
limited by the paucity of observables22 as well as by technical
difficulties in accessing the ns-μs time scale; residual dipolar
couplings can access this motional time scale but the
information on rates of motion is lost by averaging and can
only be obtained partially and indirectly. On the other hand,
solid state NMR (ssNMR) can access this time scale, but the
information that can be obtained so far by this approach is
limited to relatively few sites that have to be probed
individually.
Atomistic molecular dynamics (MD) simulations can

obviously complement experimental investigations if they are
accurate. These approaches, including the recent multiμs
simulation of apo TAR28 based on the CHARMM36 force
field,30−32 have provided valuable support for the conforma-
tional-selection mechanism to explain the interaction between
TAR and other ligands. Yet the scope of unbiased atomistic
MD simulations in addressing RNA dynamics has been much
more limited so far than for proteins, due to imperfections of
the parametrizations of the atomistic force field for nucleic
acids.33−36 In the case of TAR, the latter shortcoming, along
with the challenges posed by extensive conformational
sampling, might be responsible for the modest agreement
previously reported for residual dipolar couplings (RDCs)
calculated from MD simulations and those observed exper-
imentally.28 Fortunately, recent breakthroughs in force field
parametrization indicate that MD simulations of RNA
molecules can now be conducted with predictive power.
Notably, the latest release of the AMBER force field can
accurately reproduce with subμs time scale simulations, the

structure and conformation of nucleic acids, including, as
benchmarks, TAR complexes.37−39

Here, we build on these technical advances to re-examine the
conformational selection hypothesis of TAR-ligand recognition
by using advanced computational techniques to reexamine the
experimental results. We collected μs-long MD simulations
starting from various instances of apo and holo TAR structures
depleted of the ligands using the parmbsc0 AMBER force
field.37 The viability and effectiveness of the approach for
sampling the biologically relevant conformational space of TAR
was established a posteriori by the successful comparison of
calculated and experimental RDCs40 and order parameter S2

values,39 as well as by the consistency of our findings with
fluorescence experiments25 and with NMR-based structural
information (Table S1).13−21 To the best of our knowledge this
represents the first documented instance where such a broad
range of TAR experimental data is successfully reproduced by a
single set of unbiased MD simulations. Our calculations are
consistent with the NMR-based observations that indicate that
(i) bending and twisting motions of the upper stem, as well as
more local motions, occur spontaneously;13−21 and (ii) the
structure samples a wide range of interhelical angles as the
upper stem experiences nearly unrestrained motions at
intermediate (subμs) rates.41,42 Once fully validated, the
numerical approach is used to re-examine the detailed TAR
intrinsic dynamics and explore its functionally oriented
character.

■ METHODS
The simulations of TAR in aqueous solution described herein have
been performed following a published protocol.39 The initial structures
corresponded to the apo form (PDB ID: 1ANR)14 and the complex
with the cyclo-RVRTRKGRRIRIPP cyclic peptide (L-22, PDB ID:
2KDQ)29 depleted of the ligand. The starting structures were chosen
on the basis of the RMSD from the average structure and of the
agreement with experimental residual dipolar coupling (RDC)
values.40 The systems were embedded into truncated octahedrons
containing about 13 000 water molecules. Periodic boundary
conditions were applied. The solutes and their images were located
at a minimum distance of 2.4 nm. The use of large simulation boxes
(395−414 nm3) was necessary to eliminate artificial interactions
between highly charged molecules at the periodically repeated
images.43 Ions were added to reproduce the experimental ion
concentration used for NMR structures (50 mM NaCl and 10 mM
KCl for the apo and the L-22 bound structure, respectively14,29). Thus,
40 Na+ and 12 Cl− ions and 30 K+ and 2 Cl− ions were added to the
apo and L-22 bound forms of TAR, respectively. A third condition was
prepared by adding 30 K+ and 2 Cl− ions to the apo TAR structure.
The parmbsc0 AMBER,37 the TIP3P model44 and Smith and Dang’s
force fields45 were used for RNA, water and the ions, respectively. The
Particle Mesh Ewald method46 was used to treat long-range
electrostatic interactions with a real space cutoff of 1.2 nm. The
simulations were performed using the program GROMACS 4.5.547

with a simulation step of 2 fs. The LINCS algorithm48 was applied to
constrain all bonds involving hydrogen atoms. NPT conditions were
achieved by coupling the systems to a Nose−̀Hoover thermostat49 at
300 K and a Andersen−Parrinello−Rahman Barostat50,51 at 1 atm.
The same cutoff was also used for the van der Waals interactions. The
subdivision of TAR in quasi-rigid domains (QRDs) followed the
structure quasi-rigid domain decomposition method (PiSQRD) of refs
52, 53. The two highly mobile terminal nucleotides were excluded
from analysis. RDCs were calculated by applying the Prediction of
ALignmEnt from Structure (PALES)54 program onto 10 000 MD
snapshots and by averaging the results.

Figure 1. HIV-1 TAR. Sequence (A) and cartoon representation (B)
of the structure obtained from NMR studies.29 The apical loop, bulge
and the upper and lower stems are colored in magenta, green, yellow
and red, respectively. (C) Cartoon representation of the interstem
bending (ΩISB) angle involved in the movements of the helical stems
movement. See Figure S2 in the Supporting Information for further
details.
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§  NMR shows that TAR binds to 
Tat mimics and small ligands 
mostly through its “bulge” 
separating two helical regions 
(“upper” and “lower” stems). 
Partial stacking of U23 on A22 
and C24 on U23 in the bulge 
generates a kink between the 
two stems   

§    
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Structure: The Bulge 
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the fly” a matching TAR conformer as it is spontaneously, yet
transiently populated in free TAR,22 suggesting that such
ligands use the conformational selection mechanisms for
molecular recognition of TAR (Table S1).13,18−21

In order to understand TAR/ligand recognition mechanism,
an in-depth characterization of the internal motions of this
RNA is necessary,23−25 including an understanding of the
interplay among relevant time scales. Conformational exchange
in TAR has been shown to occur over a very wide range of
rates, from ps to ms. As a consequence of this breadth of
motional rates, probing experimentally the mechanism of
recognition is very challenging.26−28 On the one hand, the
insight provided by NMR in the solution state (solNMR) is
limited by the paucity of observables22 as well as by technical
difficulties in accessing the ns-μs time scale; residual dipolar
couplings can access this motional time scale but the
information on rates of motion is lost by averaging and can
only be obtained partially and indirectly. On the other hand,
solid state NMR (ssNMR) can access this time scale, but the
information that can be obtained so far by this approach is
limited to relatively few sites that have to be probed
individually.
Atomistic molecular dynamics (MD) simulations can

obviously complement experimental investigations if they are
accurate. These approaches, including the recent multiμs
simulation of apo TAR28 based on the CHARMM36 force
field,30−32 have provided valuable support for the conforma-
tional-selection mechanism to explain the interaction between
TAR and other ligands. Yet the scope of unbiased atomistic
MD simulations in addressing RNA dynamics has been much
more limited so far than for proteins, due to imperfections of
the parametrizations of the atomistic force field for nucleic
acids.33−36 In the case of TAR, the latter shortcoming, along
with the challenges posed by extensive conformational
sampling, might be responsible for the modest agreement
previously reported for residual dipolar couplings (RDCs)
calculated from MD simulations and those observed exper-
imentally.28 Fortunately, recent breakthroughs in force field
parametrization indicate that MD simulations of RNA
molecules can now be conducted with predictive power.
Notably, the latest release of the AMBER force field can
accurately reproduce with subμs time scale simulations, the

structure and conformation of nucleic acids, including, as
benchmarks, TAR complexes.37−39

Here, we build on these technical advances to re-examine the
conformational selection hypothesis of TAR-ligand recognition
by using advanced computational techniques to reexamine the
experimental results. We collected μs-long MD simulations
starting from various instances of apo and holo TAR structures
depleted of the ligands using the parmbsc0 AMBER force
field.37 The viability and effectiveness of the approach for
sampling the biologically relevant conformational space of TAR
was established a posteriori by the successful comparison of
calculated and experimental RDCs40 and order parameter S2

values,39 as well as by the consistency of our findings with
fluorescence experiments25 and with NMR-based structural
information (Table S1).13−21 To the best of our knowledge this
represents the first documented instance where such a broad
range of TAR experimental data is successfully reproduced by a
single set of unbiased MD simulations. Our calculations are
consistent with the NMR-based observations that indicate that
(i) bending and twisting motions of the upper stem, as well as
more local motions, occur spontaneously;13−21 and (ii) the
structure samples a wide range of interhelical angles as the
upper stem experiences nearly unrestrained motions at
intermediate (subμs) rates.41,42 Once fully validated, the
numerical approach is used to re-examine the detailed TAR
intrinsic dynamics and explore its functionally oriented
character.

■ METHODS
The simulations of TAR in aqueous solution described herein have
been performed following a published protocol.39 The initial structures
corresponded to the apo form (PDB ID: 1ANR)14 and the complex
with the cyclo-RVRTRKGRRIRIPP cyclic peptide (L-22, PDB ID:
2KDQ)29 depleted of the ligand. The starting structures were chosen
on the basis of the RMSD from the average structure and of the
agreement with experimental residual dipolar coupling (RDC)
values.40 The systems were embedded into truncated octahedrons
containing about 13 000 water molecules. Periodic boundary
conditions were applied. The solutes and their images were located
at a minimum distance of 2.4 nm. The use of large simulation boxes
(395−414 nm3) was necessary to eliminate artificial interactions
between highly charged molecules at the periodically repeated
images.43 Ions were added to reproduce the experimental ion
concentration used for NMR structures (50 mM NaCl and 10 mM
KCl for the apo and the L-22 bound structure, respectively14,29). Thus,
40 Na+ and 12 Cl− ions and 30 K+ and 2 Cl− ions were added to the
apo and L-22 bound forms of TAR, respectively. A third condition was
prepared by adding 30 K+ and 2 Cl− ions to the apo TAR structure.
The parmbsc0 AMBER,37 the TIP3P model44 and Smith and Dang’s
force fields45 were used for RNA, water and the ions, respectively. The
Particle Mesh Ewald method46 was used to treat long-range
electrostatic interactions with a real space cutoff of 1.2 nm. The
simulations were performed using the program GROMACS 4.5.547

with a simulation step of 2 fs. The LINCS algorithm48 was applied to
constrain all bonds involving hydrogen atoms. NPT conditions were
achieved by coupling the systems to a Nose−̀Hoover thermostat49 at
300 K and a Andersen−Parrinello−Rahman Barostat50,51 at 1 atm.
The same cutoff was also used for the van der Waals interactions. The
subdivision of TAR in quasi-rigid domains (QRDs) followed the
structure quasi-rigid domain decomposition method (PiSQRD) of refs
52, 53. The two highly mobile terminal nucleotides were excluded
from analysis. RDCs were calculated by applying the Prediction of
ALignmEnt from Structure (PALES)54 program onto 10 000 MD
snapshots and by averaging the results.

Figure 1. HIV-1 TAR. Sequence (A) and cartoon representation (B)
of the structure obtained from NMR studies.29 The apical loop, bulge
and the upper and lower stems are colored in magenta, green, yellow
and red, respectively. (C) Cartoon representation of the interstem
bending (ΩISB) angle involved in the movements of the helical stems
movement. See Figure S2 in the Supporting Information for further
details.
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§  Several µs-long NPT AMBER-
based MD simulations starting 
from apo and holo TAR give 
similar results 

§    
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Investigating TAR internal motion 
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■ RESULTS AND DISCUSSION
We ran four independent, 1 μs-long atomistic MD simulations
starting from different initial conditions. Two simulations
(TAR50a and TAR50b hereafter), differing only for the initial
velocities, were based on the NMR apo TAR structure at the
same ionic strength of the NMR experiments (50 mM NaCl).14

A third simulation (TAR10a) was based on the NMR TAR
structure bound to the cyclic peptide T-22 depleted of the
ligand at the ionic strength of NMR experiment (10 mM
KCl).29 The last simulation (TAR10b) were based on the
NMR apo TAR structure,14 but with a lower ionic strength than
that of experiment (10 mM KCl).
To assess the convergence of the simulated trajectories we

considered their projections on the top essential dynamical
spaces obtained from a standard covariance analysis. Following
Hess’s criterion,55 these projections were next compared with
those expected for a random reference. The observed negligible
overlap (see Table S2) confirms a posteriori adequate sampling
of TAR conformations around the equilibrium position. The
root-mean-square-deviation (RMSD) from the initial con-
formations after the first 0.1 μs oscillates between 0.4 and 0.7
nm (Figure S3). This RMSD value is compatible with those
reported for TAR conformers calculated from replica exchange
techniques,38 which can sample conformational space very
effectively, but without providing kinetic information. The good
match of RMSD values between the two methods demonstrates
that coverage of the conformational space accessible to TAR
achieved by retaining the full dynamic detail of MD simulations
is exhaustive.
The accuracy of the simulations was established by

confronting the calculated RDC40,60 and order parameter S2

values with those measured experimentally.39 The Pearson’s
correlation coefficients (CCs) between calculated and exper-
imental RDCs are 0.9 (Figure 2A). To the best of our
knowledge, this is the first time that such good agreement is
achieved between RDCs extracted from MD simulations of
RNA and experimental results.61 The order parameter S2 values
are also in fair agreement with the experimental data (Figure
2B). Both techniques confirm that the bulge and the loop in
both NMR experiments and computations are the most mobile
regions.
The results of Figure 2 indicate that the four simulations

provide similar results, and the same is true for all of the
properties calculated in this manuscript. From now on, we
report only the result of one simulation based on the apo TAR
at 50 mM NaCl (TAR50a). The results of the other three
simulations are summarized in the Supporting Information.
In order to characterize the large-scale motions of TAR, we

find it convenient to identify QRDs, which are approximately
rigid, although not static. These are derived by an analysis of
the fluctuations of all pairwise nucleotide distances.52,53 QRDs
correspond to regions whose internal geometry is largely fixed
(resulting in constant modules of pairwise nucleotide distances)
while the relative interdomain position and orientation changes
significantly.
The analysis of the simulation indicates that TAR can be

subdivided into four QRDs: the apical loop, the bulge and the
upper and lower stems (Figure 3A). The internal quasi-rigid
character (i.e., the highly coordinated motions) of the bulge
and apical loop has not been noted before, while that of the
helical stems would have been expected a priori based on the
structural and dynamics characteristics of helical regions.25,42

The RMSDs of the upper and lower stems and of the bulge
QRDs oscillate between 0.2 and 0.4 nm after a few ns (Figure
S3). The RMSDs of the apical loop QRD indicated a less stable
simulation, as confirmed by the root-mean-fluctuations (RMSF,
Figure S5), and oscillate between 0.2 and 0.5 nm. The motion
of the lower stem QRD is correlated with that of the bulge; the
motion of the lower and upper stems is anticorrelated with that
of the loop, while that of the bulge is anticorrelated with that of
the upper stem. The motion of the bulge is anticorrelated to
that of the apical loop. In particular, the scissor-like motion of
the apical loop relative to the bulge results in a canting of the
major groove of TAR in the proximity of the bulge (see Figure
3C). Bulge rearrangements, monitored as in ref 28 by using the
base distance between A22 and U23, occurs in the hundreds of
nanosecond time scale (Figure S6). Moreover, the correlation
plots between the A22-U23 base distance and ΩISB show three

Figure 2. Comparison between NMR data of TAR and four
independent, μs-long MD simulations (TAR50a, TAR50b, TAR10a
and TAR10b). (A) Correlation plots of experimental RDCs (Hz) from
E0-TAR40 and the corresponding calculated values. (B) Calculated
(blue circles) and experimental39 (red circles) order parameter (S2,
arbitrary units) values for nucleotides 17−45 of TAR.
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■ RESULTS AND DISCUSSION
We ran four independent, 1 μs-long atomistic MD simulations
starting from different initial conditions. Two simulations
(TAR50a and TAR50b hereafter), differing only for the initial
velocities, were based on the NMR apo TAR structure at the
same ionic strength of the NMR experiments (50 mM NaCl).14

A third simulation (TAR10a) was based on the NMR TAR
structure bound to the cyclic peptide T-22 depleted of the
ligand at the ionic strength of NMR experiment (10 mM
KCl).29 The last simulation (TAR10b) were based on the
NMR apo TAR structure,14 but with a lower ionic strength than
that of experiment (10 mM KCl).
To assess the convergence of the simulated trajectories we

considered their projections on the top essential dynamical
spaces obtained from a standard covariance analysis. Following
Hess’s criterion,55 these projections were next compared with
those expected for a random reference. The observed negligible
overlap (see Table S2) confirms a posteriori adequate sampling
of TAR conformations around the equilibrium position. The
root-mean-square-deviation (RMSD) from the initial con-
formations after the first 0.1 μs oscillates between 0.4 and 0.7
nm (Figure S3). This RMSD value is compatible with those
reported for TAR conformers calculated from replica exchange
techniques,38 which can sample conformational space very
effectively, but without providing kinetic information. The good
match of RMSD values between the two methods demonstrates
that coverage of the conformational space accessible to TAR
achieved by retaining the full dynamic detail of MD simulations
is exhaustive.
The accuracy of the simulations was established by

confronting the calculated RDC40,60 and order parameter S2

values with those measured experimentally.39 The Pearson’s
correlation coefficients (CCs) between calculated and exper-
imental RDCs are 0.9 (Figure 2A). To the best of our
knowledge, this is the first time that such good agreement is
achieved between RDCs extracted from MD simulations of
RNA and experimental results.61 The order parameter S2 values
are also in fair agreement with the experimental data (Figure
2B). Both techniques confirm that the bulge and the loop in
both NMR experiments and computations are the most mobile
regions.
The results of Figure 2 indicate that the four simulations

provide similar results, and the same is true for all of the
properties calculated in this manuscript. From now on, we
report only the result of one simulation based on the apo TAR
at 50 mM NaCl (TAR50a). The results of the other three
simulations are summarized in the Supporting Information.
In order to characterize the large-scale motions of TAR, we

find it convenient to identify QRDs, which are approximately
rigid, although not static. These are derived by an analysis of
the fluctuations of all pairwise nucleotide distances.52,53 QRDs
correspond to regions whose internal geometry is largely fixed
(resulting in constant modules of pairwise nucleotide distances)
while the relative interdomain position and orientation changes
significantly.
The analysis of the simulation indicates that TAR can be

subdivided into four QRDs: the apical loop, the bulge and the
upper and lower stems (Figure 3A). The internal quasi-rigid
character (i.e., the highly coordinated motions) of the bulge
and apical loop has not been noted before, while that of the
helical stems would have been expected a priori based on the
structural and dynamics characteristics of helical regions.25,42

The RMSDs of the upper and lower stems and of the bulge
QRDs oscillate between 0.2 and 0.4 nm after a few ns (Figure
S3). The RMSDs of the apical loop QRD indicated a less stable
simulation, as confirmed by the root-mean-fluctuations (RMSF,
Figure S5), and oscillate between 0.2 and 0.5 nm. The motion
of the lower stem QRD is correlated with that of the bulge; the
motion of the lower and upper stems is anticorrelated with that
of the loop, while that of the bulge is anticorrelated with that of
the upper stem. The motion of the bulge is anticorrelated to
that of the apical loop. In particular, the scissor-like motion of
the apical loop relative to the bulge results in a canting of the
major groove of TAR in the proximity of the bulge (see Figure
3C). Bulge rearrangements, monitored as in ref 28 by using the
base distance between A22 and U23, occurs in the hundreds of
nanosecond time scale (Figure S6). Moreover, the correlation
plots between the A22-U23 base distance and ΩISB show three

Figure 2. Comparison between NMR data of TAR and four
independent, μs-long MD simulations (TAR50a, TAR50b, TAR10a
and TAR10b). (A) Correlation plots of experimental RDCs (Hz) from
E0-TAR40 and the corresponding calculated values. (B) Calculated
(blue circles) and experimental39 (red circles) order parameter (S2,
arbitrary units) values for nucleotides 17−45 of TAR.
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52 

 Free energy as a function of selected collected 
variables 

1. Distance  between the centers of mass of the 
ligand and of the CAG tract in RNA10 

2. Number of  H-bonds between the ligand and 
the RNA 

3. Number of hydrophobic contacts between 
the ligand and the RNA 
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Step I: Binding of known ligands 

Bochicchio	A.,	Rossew	G.,	Tabarrini	O.,	Krauß	S.	,	
Carloni	P.	J.Chem.Theory	Comput.,	2015,	11	(10),	pp	
4911-4922			

ΔGexp  

(kcal/mol) 
ΔGexp  

(kcal/mol) 

1 -9.8±0.7 ~-10 

2 -8.4±0.4 ~-8 

Huntington’s disease:
Repeat expansion-based disease 

Pathogenic 
RNACAG/protein (e.g MID1) 

complex

CAG repeats fold into 
expanded hairpins

(disease threshold:> 37 repeats)

Increased translation 
of neurotoxic HTT protein

Derive	small	
molecules	to	target	
(CAG)n		

MD+	Well-
Tempered	
Metadynamics	
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Step II: Identification of new compounds  
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interact	with	
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25	compounds	
selected		

5	In	vitro/in	cell		
essays	

Scifinder		
database	search	

1	

ü  Binds	to	CAG	mo)f	

MaVhes	F.#,	Massari	S.#,	Bochicchio	A.#,		Schorpp	K.#,	Schilling	J.#,	Weber	S.,	Offermann	N.,	Desan)s	J.,	Wanker	E.,	Carloni	P.,	Kamyar	H.,	Tabarrini	O.2,	
Rossew	G.,	Krauß	S.,	submiVed	to	Sci.	Rep.	

ΔGcalc  ~ 7 kcal/mol (CAG)2
ΔGMST = 5.7± 0.2 kcal/mol (CAG)18
ΔGMST = 5.1±0.1 kcal/mol (CAG)40 
 	

 A4
 A17

 G5

ü  Inhibits	the	binding	of	
proteins	(e.g.	MID1)	to	
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A multiscale approach for drug-affinity predictions

Molecular Mechanics/Coarse-grained approach Hamiltonian-Adaptive resolution scheme

Leguebe M. et al., PLOS ONE (2012) Potestio R. et al., Phys. Rev. Lett. (2013)

Dual-resolution

solventDual-resolution

protein

Simulation of a grand canonical 

ensemble for calculation of binding 

free energies and ligand screening 

(need for HPC resources).
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New HPC-based Approach 
•  Multiple-Program Multiple-

Data approach using the 
ad-hoc communication 
library 

•  Fully exploits the efficient 
parallel architecture of 
both CPMD and the MM 
code 

•  Allows coupling to virtually 
any MM code 
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Improving the scaling performance allows getting better sampling 
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A multiscale approach for drug-affinity predictions

Molecular Mechanics/Coarse-grained approach Hamiltonian-Adaptive resolution scheme

Leguebe M. et al., PLOS ONE (2012) Potestio R. et al., Phys. Rev. Lett. (2013)

Dual-resolution

solventDual-resolution

protein

Simulation of a grand canonical 

ensemble for calculation of binding 

free energies and ligand screening 

(need for HPC resources).
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Efficient	sampling	of	side	chain	at	binding	site	
Simplified	representa)on	of	the	rest			



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t 
E QM/MM :Bonded Interactions 

MM atoms/QM atoms bonds:  monovalent pseudopotentials 
 
Angle bending and dihedral distorsions:Classical force field 
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E QM/MM :Non bonded Interactions 

 
 
 
 
 

monovalent
pseudopotential

QM

e-e-

MM

i

j

k
l

qo

qp
--

++

included
 in Vext

1-Electron density is overpolarized at short range: electron spill-out problem 
 
2-  # operations ~Nrsgrid  x  NMM ~1,000 x 10,000 
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1-Spill out: Replacing the Coulomb potential with 
an ad hoc function 

monovalent
pseudopotential

QM

e-e-

MM

i

j

k
l

qo

qp
--

++

included
 in Vext

)()(/ ∑
∈

∫ −=
MMi

iii
ele

MMQM rrvrdrqE ρ

RCJ=cutoff radii, tested in Laio et al JCP 2002 
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each	node	with	descendants	represents	
the	inferred	most	recent	common	ancestor	
of	the	descendants,	and	the	edge	lengths	
in	some	trees	may	be	interpreted	as	-me	
es-mates.	Each	node	is	called	a	taxonomic	
unit.	Internal	nodes	are	generally	called	
hypothe-cal	taxonomic	units,	as	they	
cannot	be	directly	observed.		


