Modeling Quantum Behavior in the Framework of Permutation Groups

Mathematical Modeling and Computational Physics, 2017
July 3-7, 2017
Joint Institute for Nuclear Research, Dubna

Vladimir Kornyak

Laboratory of Information Technologies Joint Institute for Nuclear Research

Dubna, Russia

July 6, 2017
(1) Quantum mechanics
(2) Constructive modification
(3) Modeling quantum evolution

Quantum mechanics I. States

(1) Pure state $=$ ray in Hilbert space \mathcal{H} over \mathbb{C}
equivalence $\sim:|\psi\rangle \sim a|\psi\rangle$
$|\psi\rangle \in \mathcal{H}, a \in \mathbb{C}$
$\xrightarrow{\text { reducing } \sim \text { by normalization }}|\psi\rangle \sim \mathrm{e}^{\mathrm{i} \alpha}|\psi\rangle$

$$
\|\psi\|=1, \alpha \in \mathbb{R}
$$

$\xrightarrow{\text { transition to rank one projector }}$

$$
\Pi_{\psi}=|\psi\rangle\langle\psi|
$$

$$
\left\{\begin{array}{l}
\text { special case of } \\
\text { density matrix }
\end{array}\right.
$$

(2) Mixed state $=$ weighted mixture of pure states
density matrix $\rho=\rho^{\dagger}, \quad \rho \geq 0, \quad \operatorname{tr} \rho=1$
$\mathcal{D}(\mathcal{H})$ - set of density matrices
(3) State $\rho_{X Y} \in \mathcal{D}\left(\mathcal{H}_{X Y}=\mathcal{H}_{X} \otimes \mathcal{H}_{Y}\right)$ of composite system is

- separable if $\rho_{X r}=\sum_{k} w_{k} \rho_{x}^{k} \otimes \rho_{r}^{k}$

$$
w_{k} \geq 0, \quad \sum_{k} w_{k}=1
$$

- entangled otherwise

Quantum mechanics II. Observation and measurement

(1) Observation $=$ "click of detector" in subspace $\mathcal{S} \leq \mathcal{H}$ at state ρ "detector in \mathcal{S} " \longleftrightarrow projector $\Pi_{\mathcal{S}}$
Gleason's theorem: probability measure $\mu_{\rho}(\mathcal{S})=\operatorname{tr}\left(\rho \Pi_{\mathcal{S}}\right)$
special case: $\rho=|\psi\rangle\langle\psi|$ and $\mathcal{S}=\operatorname{span}(|\varphi\rangle)$
\longrightarrow Born's rule: $\mathbf{P}_{\text {Born }}=|\langle\varphi \mid \psi\rangle|^{2}$
(2) Measurement $=$ observation of ρ in eigenspaces of Hermitian operator $A=A^{\dagger}=\sum_{k} a_{k} \Pi_{e_{k}} \quad$ (called "observable")

- e_{1}, e_{2}, \ldots - orthonormal basis of eigenvectors of A
- $a_{1}, a_{2}, \ldots \in \mathbb{R}$ - spectrum of A
- a_{k} - result of measurement at click of detector $\Pi_{e_{k}}$
- $\langle A\rangle_{\rho}=\operatorname{tr}(\rho A)$ - expectation value of A in state ρ

Quantum mechanics III. Time evolution

(1) Evolution $=$ unitary transformation of data between observations at times t and t^{\prime}

- $\left|\psi_{t^{\prime}}\right\rangle=U_{t^{\prime} t}\left|\psi_{t}\right\rangle \quad$ state vector
- $\rho_{t^{\prime}}=U_{t^{\prime} t} \rho_{t} U_{t^{\prime} t}^{\dagger} \quad$ density matrix
$\left|\psi_{t}\right\rangle$ or ρ_{t} - state after observation at time t
$\left|\psi_{t^{\prime}}\right\rangle$ or $\rho_{t^{\prime}}$ - state before observation at time t^{\prime}

Continuum approximation \longrightarrow Schrödinger equation

Addendum: "Entanglement builds Geometry"

Emergence of geometry within large Hilbert space
(1) Decomposing \mathcal{H} into tensor product: $\mathcal{H}=\otimes_{x} \mathcal{H}_{x}, x \in X$ x 's are treated as points (bulks) of geometric space
(2) Tensor network is graph G with vertex set X and edges $\{x, y\}$
(3) Edges are assigned weights derived from
a measure of entanglement, typically mutual information: $I\left(\rho_{x y}\right)=S\left(\rho_{x}\right)+S\left(\rho_{y}\right)-S\left(\rho_{x y}\right)$, where $S(\rho)=-\operatorname{tr}(\rho \log \rho)$ Metric is constructed of the weights
(4) Approximate isometric embedding of G into smooth metric manifold of as small as possible dimension using algorithms like MDS (multidimensional scaling)

- many models reproduce Bekenstein-Hawking area law (holographic principle)
- Juan Maldacena and Leonard Susskind hypothesized: ER=EPR

(1) Quantum mechanics

(2) Constructive modification

(3) Modeling quantum evolution

Introduction of continuum and differential calculus simplifies problems at the cost of loss of completeness: classification of simple groups continuous (2 people for ~ 6 years) finite (~ 100 people for ~ 170 years)

Concept of group $=$ abstraction of permutations (one-to-one mappings) of a set
additional assumption: group is differentiable manifold \mid finite influence on empirical physics

strong influence	no influence
Lie groups	finite groups ("enormous theorem")
4 infinite series +5 exceptionals	$16+1+1$ infinite series +26 sporadic groups
$A_{n}, B_{n}, C_{n}, D_{n}$	$A_{n}(q), B_{n}(q), C_{n}(q), D_{n}(q), E_{6}(q), E_{7}(q), E_{8}(q), F_{4}(q), G_{2}(q)$
$E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$	${ }^{2} A_{n}\left(q^{2}\right),{ }^{2} B_{n}\left(2^{2 n+1}\right),{ }^{2} D_{n}\left(q^{2}\right),{ }^{3} D_{4}\left(q^{3}\right)$
Killing, Cartan	${ }^{2} E_{6}\left(q^{2}\right),{ }^{2} F_{4}\left(2^{2 n+1}\right),{ }^{2} G_{2}\left(3^{2 n+1}\right) \quad$ of Lee type

\mathbb{Z}_{p} - cyclic of prime order $\quad \mathrm{A}_{n}$ — alternating
$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_{1}, J_{2}, J_{3}, J_{4}, C_{o}, C_{o}, C_{0}$ $\mathrm{Fi}_{22}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}, \mathrm{HS}, \mathrm{McL}, \mathrm{He}, \mathrm{Ru}, \mathrm{Suz}, \mathrm{O}^{\prime} \mathrm{N}, \mathrm{HN}$
Ly, Th, B, M - sporadics

Removing infinities from quantum formalism

D. Hilbert: ". . . the infinite is nowhere to be found in reality.

It neither exists in nature nor provides a legitimate basis for rational thought ..."

- Formally
$\mathrm{U}(n)$ is empirically equivalent to a finite group G
- $\mathrm{U}(n) \cong \operatorname{Aut}\left(\mathcal{H}_{n}\right)$

> using a universal set of quantum gates construct
$\downarrow \mathrm{U}(n) \xrightarrow{\text { dense in } \mathrm{U}(n) \text { finitely generated matrix group }} G_{\infty}$
by Maltsev's theorem G_{∞} is residually finite
$\triangleright G_{\infty} \xrightarrow{\Longrightarrow \text { rich set of homomorphisms into finite groups }} G$

- In essence
natural assumption: finite groups act at fundamental level, and $U(n)$'s are only continuum approximations of their unitary representations
- Advantages of finite groups
- any finite group is a subgroup of a symmetric group
- any linear representation of a finite group is
* unitary
« subrepresentation of some permutation representation
"Physical' numbers
(1) natural numbers $\mathbb{N}=\{0,1, \ldots\}$ - "counters"
(2) roots of unity $r_{k} \mid r_{k}^{k}=1$ - "periodic processes"

are sufficient to represent all physically meaningful numbers:

- $\mathbb{Z}=\mathbb{N}\left[r_{2}\right]$ is extension of semiring \mathbb{N} by 2nd primitive root of unity $r_{2}=\underbrace{e^{2 \pi \mathrm{i} / 2}=-1}_{\text {Euler's identity }}$
- ring $\mathbb{N}\left[r_{k}\right] \xrightarrow{\text { taking fraction field }} k$ th cyclotomic field $\mathbb{Q}\left(r_{k}\right)$
- $\mathbb{Q}\left(r_{k}\right)$ is dense subfield of \mathbb{C} for $k \geq 3$

Importance for quantum mechanics

- minimal splitting field $F_{G} \xlongequal{\text { def }}$ minimal extension of \mathbb{Q} that allows to split completely any linear representation of group G into irreps
$F_{\mathrm{G}} \leq \mathbb{Q}\left(r_{k}\right), \quad k$ is some divisor of exponent of G

Constructive representations of finite group G

(1) Ω is permutation domain for $G,|\Omega|=\mathrm{N}$
(2) module $H=\mathbb{N}^{N}$ over semiring \mathbb{N} with basis Ω
(3) Hilbert space: $H \xrightarrow{\mathbb{N} \rightarrow \mathbb{Q}\left(r_{k}\right)} \mathcal{H}$

- $\mathbb{Q}\left(r_{k}\right)$ contains splitting field for G
- H is principal orthant in $\mathbb{Z}^{N} \subset \mathcal{H}$

Any constructive representation of G can be obtained by projection of permutation representation of G in module H onto some subspace of Hilbert space \mathcal{H} over $\mathbb{Q}\left(r_{k}\right)$

Natural $\mathrm{S}_{\mathrm{N}}-$ module \longrightarrow irreducible invariant subspaces

Canonical bases

in trivial subspace

$$
e_{1}+e_{2}+\cdots+e_{N}
$$

in standard subspace

$$
\begin{gathered}
e_{1}-e_{2} \\
e_{2}-e_{3} \\
\vdots \\
e_{N-1}-e_{N}
\end{gathered}
$$

(1) Quantum mechanics

(2) Constructive modification

(3) Modeling quantum evolution

Unitary transition between observations

Standard QM: unique unitary evolution $U_{t^{\prime} t}=\mathrm{e}^{-\mathrm{i} H\left(t^{\prime}-t\right)}$

Hamiltonian H is obtained from the principle of least action

Any extremal principle ($\left.\begin{array}{l}\text { with related computational methods: } \\ \text { stationary phase, saddle-point etc }\end{array}\right)$ involves selection of small subset of dominant elements from large set of candidates

We assume

all unitary evolutions take part with their weights, but only a small number of dominant evolutions are manifested in observations

Model of quantum evolution (inspired by quantum Zeno effect)

Discrete model sequence $t_{0}, \ldots, t_{i-1}, t_{i}, \ldots, t_{n}$

Continuum approximation unitary evolution operator $U_{k}=U\left(g_{k}\right), g_{k} \in G$
$G=\left\{g_{1}, \ldots, g_{k}\right\}$, finite group
G, Lie group
$\mathbf{P}_{i}=\sum_{k=1}^{K} w_{i k} \operatorname{tr}\left(U_{k} \rho_{i-1} U_{k}^{\dagger} \rho_{i}\right)$, single-step transition probability
$\mathbf{P}_{0 \rightarrow n}=\prod_{i=1}^{n} \mathbf{P}_{i}$, probability of trajectory
introduce entropy: same extrema but products \longrightarrow sums single-step entropy

$$
\begin{aligned}
& \Delta \mathbf{S}_{i}=-\log \mathbf{P}_{i} \\
& \mathrm{~S}_{0 \rightarrow n}=\sum_{i=1}^{n} \Delta \mathbf{S}_{i}
\end{aligned}
$$

Lagrangian \mathcal{L}
entropy of trajectory

$$
\text { action } \mathcal{S}=\int \mathcal{L} d t
$$

Continuum limit of discrete model

Simplifying assumptions
(1) probability jump for mixed $\rho: \Delta t \rightarrow 0 \Rightarrow \mathbf{P} \rightarrow \operatorname{tr}\left(\rho^{2}\right)<1$
\Longrightarrow assume pure states $\rho=|\psi\rangle\langle\psi|$
(2) Lie algebra approximation $U \approx \mathbb{1}+\mathrm{i} A, A$ is Hermitian matrix
(3) linear approximation introducing derivatives $\Delta X \approx \dot{X} \Delta t$

Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \langle\psi| \dot{A}^{2}|\psi\rangle-\langle\psi| \dot{A}|\psi\rangle^{2} \longleftrightarrow \text { dispersion of } \dot{A} \text { in state } \psi \\
& -\mathrm{i}(\langle\dot{\psi}| \dot{A}|\psi\rangle-\langle\psi| \dot{A}|\dot{\psi}\rangle+2\langle\psi| \dot{A}|\psi\rangle\langle\psi \mid \dot{\psi}\rangle)-\langle\psi \mid \dot{\psi}\rangle^{2}
\end{aligned}
$$

Dominant unitary evolutions in symmetric group S_{N}
Natural vectors: $|n\rangle=\left(\begin{array}{c}n_{1} \\ \vdots \\ n_{N}\end{array}\right),|m\rangle=\left(\begin{array}{c}m_{1} \\ \vdots \\ m_{N}\end{array}\right),|1\rangle=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$
Born rule in

$$
\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{N}
\end{array}\right),|m\rangle=\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{N}
\end{array}\right),|1\rangle=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(1) natural representation: $\mathbf{P}_{\text {nat }}(n, m)=\frac{\langle n \mid m\rangle^{2}}{\langle n \mid n\rangle\langle m \mid m\rangle}$
(2) standard representation:

$$
\mathrm{P}_{\mathrm{std}}(n, m)=\frac{\left(\langle n \mid m\rangle-\frac{1}{\mathrm{~N}}\langle n \mid 1\rangle\langle 1 \mid m\rangle\right)^{2}}{\left(\langle n \mid n\rangle-\frac{1}{\mathrm{~N}}\langle n \mid 1\rangle\langle 1 \mid n\rangle\right)\left(\langle m \mid m\rangle-\frac{1}{\mathrm{~N}}\langle m \mid 1\rangle\langle 1 \mid m\rangle\right)}
$$

$\mathrm{P}_{*}(U n, m)$ is maximized by unitary operator $U=P_{m}^{-1} P_{n}$
Permutations P_{n}, P_{m} sort $n, m\left\{\begin{array}{l}\text { identically for } \mathbf{P}_{\text {nat }} \\ \text { identically or oppositely for } \mathbf{P}_{\text {std }}\end{array}\right.$

Energy of permutation

(1) Planck's formula: $E=h \nu$

$$
\text { energy } \simeq \text { frequency }=\frac{\text { number of detector clicks }}{\text { time interval }}
$$

= eigenvalue of Hamiltonian $H=\mathrm{i} \hbar \ln U$
(2) Hamiltonian of permutation p of cycle type $\left\{\left(\ell_{1}\right.\right.$ - length, m_{1} - multiplicity $\left.), \ldots,\left(\ell_{K}, m_{K}\right)\right\}:$

$$
H_{p}=\left(\begin{array}{c}
\mathbb{1}_{m_{1}} \otimes H_{\ell_{1}} \\
\ddots \\
\mathbb{1}_{m_{K}} \otimes H_{\ell_{K}}
\end{array}\right)
$$

$$
H_{\ell_{k}}=\frac{1}{\ell_{k}}\left(\begin{array}{llll}
0 & & & \\
& 1 & & \\
& & \ddots & \\
& & & \ell_{k}-1
\end{array}\right) \text { - principal Hamiltonian of } \ell_{k} \text {-cycle }
$$

(3) Base ("ground state", "zero-point", "vacuum") energy of permutation

$$
\varepsilon_{p}=\frac{1}{\max \left(\ell_{1}, \ldots, \ell_{K}\right)}
$$

Monte Carlo simulation for S_{100} and S_{2000}

$\left|S_{100}\right| \approx 9 \times 10^{157}$
$\left|\mathrm{S}_{2000}\right| \approx 3 \times 10^{5735}$

Four (red, blue, black, green) randomly generated dominant evolutions

Summary

(1) Quantum mechanics $\longleftarrow\left\{\begin{array}{l}\nabla \text { permutations of finite sets } \\ \nabla \text { projections of natural vectors } \\ \text { into invariant subspaces }\end{array}\right.$
fundamental impossibility to trace
(2) Quantum randomness
(3) Complex numbers in quantum formalism
(4) Principle of least action
$\longleftarrow \quad\left\{\begin{array}{l}\text { individuality of indistingui } \\ \text { objects in their evolution }\end{array}\right.$
$\longleftarrow\left\{\begin{array}{l}\text { non-constructive version } \\ \text { (metric completion) } \\ \text { of cyclotomic numbers }\end{array}\right.$
(5) Observable behavior of quantum system $\left\{\begin{array}{l}\text { continuum approximation of } \\ \text { selection of most likely trajectories }\end{array}\right.$
$\longleftarrow\left\{\begin{array}{l}\text { dominants among all possible } \\ \text { quantum evolutions }\end{array}\right.$
(4) Appendix

- Foundational issues of quantum mechanics
- Model of time
- Gauge curvature and quantum uncertainty
- Continuous symmetries as approximations
- Approximate transitivity of symmetric group on quantum states
- Invariant inner products of natural vectors
- Mach-Zehnder interferometer
- Quantum Zeno effect
- Lagrangian for random walk

Physicists believe in fundamental nature of quantum randomness
M. Schlosshauer, J. Kofler, A. Zeilinger ${ }^{1}$

A Snapshot of Foundational Attitudes Toward Quantum Mechanics
Stud. Hist. Phil. Mod. Phys. 44, 222-230 (2013)
Question 1: What is your opinion about the randomness of individual quantum events (such as the decay of a radioactive atom)?
a. The randomness is only apparent: 9\%
b. There is a hidden determinism:
0\%
c. The randomness is irreducible: 48\%
d. Randomness is a fundamental concept in nature: 64\%
$0 \% \quad 10 \% \quad 20 \% \quad 30 \% \quad 40 \% \quad 50 \% \quad 60 \% \quad 70 \% \quad 80 \% \quad 90 \% \quad 100 \%$ percent of votes

[^0]
Physicists do not believe in "local realism"

Question 6: What is the message of the observed violations of Bell's inequalities?
a. Local realism is untenable: 64\%
b. Action-at-a-distance in the physical world:
12%
c. Some notion of nonlocality:
$\square 36 \%$
d. Unperformed measurements have no results:

52\%
e. Let's not jump the gun-let's take the loopholes more seriously: 6\%
$0 \% \quad 10 \% \quad 20 \% \quad 30 \% \quad 40 \% \quad 50 \% \quad 60 \% \quad 70 \% \quad 80 \% \quad 90 \% 100 \%$ percent of votes

Epistemic view of quantum behavior

example: Spekkens' toy model (R. W. Spekkens, 2004)
"ontic" states Ω
symmetries $\operatorname{Sym}(\Omega)$
complete information is not available
"epistemic" states are described via rays in \mathcal{H}
symmetries Aut (\mathcal{H})
partial information is extracted from projections into subspaces of \mathcal{H}
we need to specify states mapping: $\Omega \longmapsto \mathcal{H}$ in Spekkens' model artificial knowledge balance principle:
". . . for every system, at every time, the amount of knowledge one possesses about the ontic state of the system at that time must equal the amount of knowledge one lacks"

Our assumption about the "loss of ontical information":

quantum randomness arises from fundamental impossibility to trace individuatity of indistinguishable objects in their evolution - only invariant relations are available in observations

Model of time

- Fundamental ("Planck") time: $\mathcal{T}=\mathbb{N}$ (or \mathbb{Z})
- "Empirical time", sequence of "instants of observations":

$$
\mathrm{T}=\left\{t_{0}, t_{1}, \ldots, t_{i-1}, t_{i}, \ldots\right\}
$$

- simplest assumption: T is a subsequence of \mathcal{T} ie $t_{i} \in \mathcal{T}$
- more realistic model: distribution around $t_{i} \in \mathcal{T}$ eg binomial distribution

$$
K_{\sigma}\left(\tau-t_{i}\right)=\frac{(2 \sigma)!}{4^{\sigma}\left(\sigma-t_{i}+\tau\right)!\left(\sigma+t_{i}-\tau\right)!}, \quad t_{i}-\sigma \leq \tau \leq t_{i}+\sigma
$$

$\sigma=0$ reproduces simplest assumption
smallest time uncertainty available in physics $\sim 10^{26}$ Planck units

Curvature of gauge connection in continuum approximation infinitesimal holonomy and quantum uncertainty

Lie algebra
approxima-

$$
\left\langle\varphi_{a} \mid \varphi_{b}\right\rangle=\langle\varphi| \mathrm{U}\left(a^{-1} b\right)|\varphi\rangle \xrightarrow{\text { tion }} \approx\langle\varphi| \mathbb{1}+\mathrm{i} F|\varphi\rangle=1+\mathrm{i}\langle\varphi| F|\varphi\rangle
$$

normalization: $\|(\mathbb{1}+\mathrm{i} F) \varphi\|^{2}=\langle\varphi|(\mathbb{1}-\mathrm{i} F)(\mathbb{1}+\mathrm{i} F)|\varphi\rangle=1+\langle\varphi| F^{2}|\varphi\rangle$
Probability:

$$
\mathbf{P}_{t_{1} \rightarrow t_{2}} \approx \frac{1+\langle\varphi| F|\varphi\rangle^{2}}{1+\langle\varphi| F^{2}|\varphi\rangle} \xrightarrow{\frac{1}{1+\varepsilon} \approx 1-\varepsilon} \approx 1-\langle\varphi| F^{2}|\varphi\rangle+\langle\varphi| F|\varphi\rangle^{2}
$$

Entropy:

$$
\Delta \mathbf{S}_{t_{1} \rightarrow t_{2}}=-\ln \mathbf{P}_{t_{1} \rightarrow t_{2}} \xrightarrow{\ln (1+\varepsilon) \approx \varepsilon} \approx\langle\varphi| F^{2}|\varphi\rangle-\langle\varphi| F|\varphi\rangle^{2} \equiv\left(\Delta_{\varphi} F\right)^{2}
$$

$\Delta_{\varphi} F$ - standard deviation
$\left(\Delta_{\varphi} F\right)^{2}$ - dispersion

Continuous symmetries as approximations I

- Group of integer lattice \mathbb{Z}^{d} :
Aut $\left(\mathbb{Z}^{d}\right) \cong \mathbb{Z}^{d} \rtimes G_{d}$

$$
G_{d} \cong\left(\mathbb{Z}_{2}\right)^{d} \rtimes \mathrm{~S}_{d} \equiv \mathbb{Z}_{2} \backslash \mathrm{~S}_{d}
$$

- Symmetric walk on \mathbb{Z}^{d} in continuum limit:

$$
\text { binomial distribution } \xrightarrow[\mathbb{Z} \rightarrow \mathbb{R}]{\text { Stirling approximation }}
$$

Gauss distribution \longrightarrow product of one-dimensional distributions \longrightarrow heat kernel

$$
\begin{aligned}
& K(t, \vec{x})=\frac{1}{(4 \pi t)^{d / 2}} \exp \left(-\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}{4 t}\right) \\
& t \in \mathbb{R}_{>0} \quad x_{i} \in \mathbb{R}
\end{aligned}
$$

- Spatial symmetry group of kernel $K(t, \vec{x})$

$$
\mathbb{R}^{d} \rtimes \mathrm{O}(d, \mathbb{R}) \text { - Euclid group }=\text { semidirect product of }
$$ translations and rotations

Continuous symmetries as approximations II

- Asymmetric walk on \mathbb{Z}
k_{+}, k_{-}- "right" and "left" step numbers
$T=k_{+}+k_{-}-$total number of steps
$p_{+}, p_{-}-$probabilities: $p_{+}+p_{-}=1$
Embedding into continuous variables $x, t, v \in \mathbb{R}$:
$x:=k_{+}-k_{-}$
$t:=T$
$v:=p_{+}-p_{-} \quad(-1 \leq v \leq 1)$
"Drift velocity" v satisfies relativistic velocity addition rule:

$$
w=(u+v) /(1+u v) \quad \text { (K.H.Knuth, 2015) }
$$

- Continuous approximation of binomial distribution

$$
P(x, t)=\sqrt{\frac{2}{\pi\left(1-v^{2}\right) t}} \exp \left\{-\frac{1}{2 t}\left(\frac{x-v t}{\sqrt{1-v^{2}}}\right)^{2}\right\}
$$

heat or diffusion or Fokker-Planck equation

$$
\frac{\partial P(x, t)}{\partial t}+v \frac{\partial P(x, t)}{\partial x}=\frac{\left(1-v^{2}\right)}{2} \frac{\partial^{2} P(x, t)}{\partial x^{2}}
$$

Continuous symmetries as approximations III

- Approximation with respect to "Hubble time" $T_{H}: t^{\prime} \ll T_{H}$ Substitutions $t=T_{H}+t^{\prime}$ and $x=v T_{H}+x^{\prime}$

$$
\begin{gathered}
\Downarrow \\
P\left(x^{\prime}, t^{\prime}\right)=\frac{m}{\sqrt{1-v^{2}}} \exp \left\{-\pi \frac{m^{2}}{4}\left(\frac{x^{\prime}-v t^{\prime}}{\sqrt{1-v^{2}}}\right)^{2}\right\}+O\left(\frac{t^{\prime}}{T_{H}}\right) \\
m=\sqrt{\frac{2}{\pi T_{H}}}
\end{gathered}
$$

S_{N} acts "approximately transitively" on pure quantum states

No of random pair $(\|x\rangle,\|y\rangle)$	1	2	3	4	
$\mathrm{P}_{\text {std }}\left(U_{\text {dom }}\|x\rangle,\|y\rangle\right)$	S_{100}	0.977	0.975	0.995	0.905
	$\mathrm{~S}_{2000}$	0.999	0.998	0.997	0.998

This resembles transitivity of general unitary group on quantum states

Icosahedral group A_{5}
 order $\left|A_{5}\right|=60$ exponent $\operatorname{Exp}\left(A_{5}\right)=30$

- Presentation by 2 generators

$$
\mathrm{A}_{5}=\left\langle a, b \mid a^{5}=b^{2}=(a b)^{3}=1\right\rangle
$$

"physical incarnation": carbon molecule fullerene $C_{60} \cong$ Cayley graph of A_{5}

- 5 irreducible representations

$$
1,3,3^{\prime}, 4,5
$$

- 3 primitive permutation reps

$$
\underline{5} \cong 1 \oplus 4, \underline{6} \cong 1 \oplus 5, \underline{10} \cong 1 \oplus 4 \oplus 5
$$

A_{5} : action on icosahedron

- Action on vertices is imprimitive Imprimitivity system

Blocks are pairs of opposite vertices

- Decomposition into irreps

$$
\underline{12} \cong \mathbf{1} \oplus \mathbf{3} \oplus \mathbf{3}^{\prime} \oplus \mathbf{5}
$$

A_{5} on icosahedron: orbitals and centralizer algebra $\Omega \times \Omega=\{1, \ldots, 12\} \times\{1, \ldots, 12\}$ rank of A_{5} on icosahedron $\mathrm{R}=4$

A_{5} on icosahedron: inner product in invariant subspaces

Invariant forms in invariant subspaces obtained by solution of 4 systems of 4 linear equations

$$
\begin{aligned}
\mathcal{B}_{1} & =\frac{1}{12}\left(\mathcal{A}_{1}+\mathcal{A}_{2}+\mathcal{A}_{3}+\mathcal{A}_{4}\right) \\
\mathcal{B}_{3} & =\frac{1}{4}\left(\mathcal{A}_{1}-\mathcal{A}_{2}-\frac{1+2 r^{2}+2 r^{3}}{5} \mathcal{A}_{3}+\frac{1+2 r^{2}+2 r^{3}}{5} \mathcal{A}_{4}\right) \\
\mathcal{B}_{3^{\prime}} & =\frac{1}{4}\left(\mathcal{A}_{1}-\mathcal{A}_{2}+\frac{1+2 r^{2}+2 r^{3}}{5} \mathcal{A}_{3}-\frac{1+2 r^{2}+2 r^{3}}{5} \mathcal{A}_{4}\right) \\
\mathcal{B}_{5} & =\frac{5}{12}\left(\mathcal{A}_{1}+\mathcal{A}_{2}-\frac{1}{5} \mathcal{A}_{3}-\frac{1}{5} \mathcal{A}_{4}\right)
\end{aligned}
$$

r is 5 th primitive root of unity
A_{5} on icosahedron: scalar products of projections of natural amplitudes
$n=\left(n_{1}, \ldots, n_{12}\right)^{T}, \quad m=\left(m_{1}, \ldots, m_{12}\right)^{T} \quad-$ natural vectors
$\Psi_{\alpha}, \Phi_{\alpha}$ - projections of n, m onto invariant subspaces
(1) $\left\langle\Phi_{1} \mid \Psi_{1}\right\rangle=\frac{1}{12}\left\{\mathcal{A}_{1}(m, n)+\mathcal{A}_{2}(m, n)+\mathcal{A}_{3}(m, n)+\mathcal{A}_{4}(m, n)\right\} \equiv \frac{1}{12} L(m) L(n)$
invariant $L(n)=\sum_{k=1}^{12} n_{k}$ is "total number of particles"
(2) $\left\langle\Phi_{\mathbf{3} \oplus \mathbf{3}^{\prime}} \mid \Psi_{\mathbf{3} \oplus \mathbf{3}^{\prime}}\right\rangle=\frac{1}{2}\left\{\mathcal{A}_{1}(m, n)-\mathcal{A}_{2}(m, n)\right\}$
(1) $\left\langle\Phi_{3} \mid \Psi_{3}\right\rangle=\frac{1}{4}\left\{\mathcal{A}_{1}(m, n)-\mathcal{A}_{2}(m, n)+\frac{\sqrt{5}}{5}\left(\mathcal{A}_{3}(m, n)-\mathcal{A}_{4}(m, n)\right)\right\}$
(2) $\left\langle\Phi_{3^{\prime}} \mid \Psi_{3^{\prime}}\right\rangle=\frac{1}{4}\left\{\mathcal{A}_{1}(m, n)-\mathcal{A}_{2}(m, n)-\frac{\sqrt{5}}{5}\left(\mathcal{A}_{3}(m, n)-\mathcal{A}_{4}(m, n)\right)\right\}$

- irrationality is consequence of imprimitivity: one can not move icosahedron vertex without simultaneous movement of its opposite \Longrightarrow only combination $3 \oplus 3^{\prime}$ makes sense
(3) $\left\langle\Phi_{5} \mid \Psi_{5}\right\rangle=\frac{5}{12}\left\{\mathcal{A}_{1}(m, n)+\mathcal{A}_{2}(m, n)-\frac{1}{5}\left(\mathcal{A}_{3}(m, n)+\mathcal{A}_{4}(m, n)\right)\right\}$

Mach-Zehnder interferometer

Beam-splitter S :

$$
\begin{aligned}
& |\nearrow\rangle \rightarrow \frac{1}{\sqrt{2}}(|\nearrow\rangle+\mathrm{i}|\searrow\rangle) \\
& |\searrow\rangle \rightarrow \frac{1}{\sqrt{2}}(|\searrow\rangle+\mathrm{i}|\nearrow\rangle)
\end{aligned} \quad S=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & \mathrm{i} \\
\mathrm{i} & 1
\end{array}\right]
$$

Mirror $M: \begin{aligned} & |\nearrow\rangle \rightarrow \mathrm{i}|\searrow\rangle \\ & |\searrow\rangle \rightarrow \mathrm{i}|\nearrow\rangle\end{aligned} \quad M=\left[\begin{array}{ll}0 & \mathrm{i} \\ \mathrm{i} & 0\end{array}\right] \quad M=S^{2}$
S generates group \mathbb{Z}_{8}

Scheme

implements evolution $S M S|\nearrow\rangle=S^{4}|\nearrow\rangle=-|\nearrow\rangle$

Elitzur-Vaidman interaction-free measurements. Penrose bomb tester

$$
|\nearrow\rangle \xrightarrow{S M S}-|\nearrow\rangle \quad \mathbf{P}=1
$$

testing dud bomb

$$
|\nearrow\rangle \xrightarrow{\Pi_{\nearrow} S M \Pi_{\nearrow} S}-\frac{1}{2}|\nearrow\rangle \quad \mathbf{P}=\frac{1}{4}
$$

bomb remains untested

$|\nearrow\rangle \xrightarrow{\Pi_{\searrow} S} \frac{i}{\sqrt{2}}|\searrow\rangle \quad \mathbf{P}=\frac{1}{2}$
good bomb went off

$|\nearrow\rangle \xrightarrow{\Pi_{\searrow} S M \Pi_{\nearrow} S} \frac{i}{2}|\searrow\rangle \quad \mathbf{P}=\frac{1}{4}$ bomb is good and intact

Mach-Zehnder interferometer implements any one-qubit gate $\operatorname{dim} \mathrm{U}(2)=4 \Longrightarrow$ need to add 4 phase shifters $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ to implement arbitrary unitary 2×2 matrix U one of 16 possibilities:

$F=\left[\begin{array}{cc}1 & 0 \\ 0 & \mathrm{e}^{\mathrm{i} \omega_{1}}\end{array}\right] \quad S=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & \mathrm{i} \\ \mathrm{i} & 1\end{array}\right] \quad G=\left[\begin{array}{cc}\mathrm{e}^{\mathrm{i} \omega_{2}} & 0 \\ 0 & \mathrm{e}^{\mathrm{i} \omega_{3}}\end{array}\right] \quad M=\left[\begin{array}{ll}0 & \mathrm{i} \\ \mathrm{i} & 0\end{array}\right] \quad H=\left[\begin{array}{cc}\mathrm{e}^{\mathrm{i} \omega_{4}} & 0 \\ 0 & 1\end{array}\right]$

MZI implementation of arbitrary matrix $U \in U(n)$

$$
U=\prod_{1 \leq i<j \leq n} \mathbb{1}_{\{1, \ldots, \hat{i}, \ldots, \widehat{j}, \ldots, n\}} \oplus U_{\mathrm{MZI}_{i j}}
$$

- sequence of $\frac{n(n-1)}{2}$ Mach-Zehnder interferometers corresponding to two-dimensional subspaces of \mathcal{H}_{n}

- $\operatorname{dim} U(n)=n^{2} \Longrightarrow\left\{\begin{array}{l}\text { excess in number of parame } \\ 4 \frac{n(n-1)}{2}-n^{2}=n^{2}-2 n\end{array}\right.$
a more economical scheme in:
M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani "Experimental Realization of Any Discrete Unitary Operator" Phys. Rev. Lett. 73 (1994) 58

Constructive view on balanced Mach-Zehnder interferometer I

- Mirror is square of beam-splitter: $M=S^{2}$
\Longrightarrow any sequence of MZI's can be described by degrees of S
- S generates cyclic group \mathbb{Z}_{8}
- Cyclotomic polynomial $\Phi_{8}(r)=1+r^{4}$
- primitive and nonprimitive roots of unity

- smallest degree of faithful permutation action $=8$

Constructive view on balanced Mach-Zehnder interferometer II

- embedding into permutations
- $S \longleftrightarrow g=(1,2,3,4,5,6,7,8)$
- representation in 8D module of natural vectors \mathbb{N}^{8}

$$
N=\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{7}, n_{8}\right)^{T} \in \mathbb{N}^{8}
$$

- similarity transformation over 8th cyclotomic field:
 $S(g)=T_{\|}^{-1} P(g) T$

$$
\left[\begin{array}{cccccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1 \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & A & \cdot \\
{\left[\begin{array}{cc}
\frac{r-r^{3}}{2} & \frac{r+r^{3}}{2} \\
\frac{r+r^{3}}{2} & \frac{r-r^{3}}{2}
\end{array}\right]}
\end{array}\right]
$$

r is 8 th primitive root of unity

$$
A=\operatorname{diag}\left(-1, r^{2},-r^{2}, r^{3},-r\right)
$$

Constructive view on balanced Mach-Zehnder interferometer III

- quantum amplitude as projection of N into "splitter" subspace

$$
|\psi\rangle=\left[\begin{array}{l}
\psi_{1} \\
\psi_{2}
\end{array}\right]=\frac{1}{8}\left[\begin{array}{l}
-r^{3}\left(n_{1}+n_{3}-n_{5}-n_{7}\right)+\left(1-r^{2}\right)\left(n_{2}-n_{6}\right) \\
r\left(n_{1}-n_{3}-n_{5}+n_{7}\right)+\left(1+r^{2}\right)\left(-n_{4}+n_{8}\right)
\end{array}\right]
$$

- $|\psi\rangle$ represents with arbitrary precision any point on the Bloch sphere - complex projective line $\mathbb{C} P^{1}$
- minuses and denominators can be eliminated
\Longrightarrow quantum state can be expressed in terms of natural numbers and roots of unity

Quantum Zeno effect ("Turing paradox")

Dynamics of quantum system under frequent observations

- frequent observations may $\left\{\begin{array}{l}\text { stop (slow down) quantum evolution } \\ \text { - quantum Zeno effect } \\ \text { force prescribed evolution } \\ \text { — "anti-Zeno effect" }\end{array}\right.$
- probability to observe initial state $\left.p_{Z}(t)=\left|\left\langle\psi_{0}\right| \mathrm{e}^{-\mathrm{i} H t}\right| \psi_{0}\right\rangle\left.\right|^{2}$
- short-time expansion $p_{Z}(t)=1-t^{2} / \tau_{Z}^{2}+\mathrm{O}\left(t^{4}\right)$
- Zeno time $\boldsymbol{\tau}_{Z}^{-2}=\left\langle\psi_{0}\right| H^{2}\left|\psi_{0}\right\rangle-\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle^{2}$

Zeno dynamics in our framework

- sequence of observations $\Pi_{\psi_{t_{0}}}, \Pi_{\psi_{t_{1}}}, \ldots, \Pi_{\psi_{t_{N}}}$ of the same state: $\quad \psi_{t_{0}}=\psi_{t_{1}}=\cdots=\psi_{t_{N}} \equiv \psi_{0}$
- $t_{0}=0, t_{N}=T, t_{i}-t_{i-1}=T / N$ - equidistant observation times
- $\mathbf{P}_{\psi_{t_{i-1}} \rightarrow \psi_{t_{i}}} \approx 1-\frac{1}{N^{2}}\left(\frac{T}{\tau_{Z}}\right)^{2}$ - short-time approximation
- $\Delta \mathbf{S}_{\psi_{t_{i-1}} \rightarrow \psi_{t_{i}}} \approx \frac{1}{N^{2}}\left(\frac{T}{\tau_{Z}}\right)^{2}$ - approximated one-step entropy
- entropy of trajectory

$$
\mathbf{S}_{\psi_{t_{0}} \rightarrow \cdots \rightarrow \psi_{t_{N}}}=\sum_{i=1}^{N} \Delta \mathbf{S}_{\psi_{t_{i-1}} \rightarrow \psi_{t_{i}}} \approx \frac{1}{N}\left(\frac{T}{\tau_{Z}}\right)^{2} \xrightarrow{N \rightarrow \infty} 0
$$

- probability of trajectory tends to 1 - the essence of Zeno effect

$$
\mathbf{P}_{\psi_{t_{0}} \rightarrow \cdots \rightarrow \psi_{t_{N}}} \approx \prod_{i=1}^{N}\left(1-\frac{1}{N^{2}}\left(\frac{T}{\tau_{Z}}\right)^{2}\right) \xrightarrow{N \rightarrow \infty} \mathrm{e}^{0}=1
$$

Zeno dynamics for unbalanced beam splitter

$S_{N}=\frac{1}{2}\left[\begin{array}{ll}r+r^{N-1} & r-r^{N-1} \\ r-r^{N-1} & r+r^{N-1}\end{array}\right]$ probability of $\left\{\begin{array}{l}\text { passage }=\frac{1}{2}+\frac{r^{2}+r^{N-2}}{4} \\ \text { reflection }=\frac{1}{2}-\frac{r^{2}+r^{N-2}}{4}\end{array}\right.$
r is N th primitive root of unity
S_{N} generates $2 D$ representation of \mathbb{Z}_{N}

Figure: $p_{U}(t)$ vs t for operator $U=S_{100} \in U\left(\mathbb{Z}_{100}\right)$

Example: Lagrangian from combinatorics I
$P_{k_{1}, k_{2}, t}=$
$\frac{t!}{k_{1}!k_{2}!} \alpha_{1}^{k_{1}} \alpha_{2}^{k_{2}} \quad-\left\{\begin{array}{l}(1+1) \mathrm{D} \text { random walk } \\ k_{1}+k_{2}=t, \alpha_{1}+\alpha_{2}=1\end{array}\right.$

$$
\begin{aligned}
& x:=k_{1}-k_{2} \\
& v:=\alpha_{1}-\alpha_{2} \quad \text {-"drift velocity" } \quad-1 \leq v \leq 1
\end{aligned}
$$

$P(x, t)=\frac{t!}{\left(\frac{t+x}{2}\right)!\left(\frac{t-x}{2}\right)!}\left(\frac{1+v}{2}\right)^{\frac{t+x}{2}}\left(\frac{1-v}{2}\right)^{\frac{t-x}{2}}$

- fundamental ("Planck") time $[0,1, \ldots, T]$
- microscopic time ("observation times")

$$
\left[t_{0}=0, \ldots, t_{i-1}, t_{i}, \ldots, t_{n}=T\right]
$$

- observed values $\left[X_{0}, \ldots, X_{i-1}, X_{i}, \ldots, X_{n}\right]$
$\Delta t_{i}=t_{i}-t_{i-1}, \quad 1 \ll \Delta t_{i} \ll T$
$\Delta X_{i}=X_{i}-X_{i-1}, \quad v_{i}-$ drift velosity in $\left[t_{i-1}, t_{i}\right]$

Example: Lagrangian from combinatorics II

$$
\begin{aligned}
& \mathbf{P}_{X_{i-1} \rightarrow X_{i}}=\frac{\Delta t_{i}!}{\left(\frac{\Delta t_{i}+\Delta x_{i}}{2}\right)!\left(\frac{\Delta t_{i}-\Delta x_{i}}{2}\right)!}\left(\frac{1+v_{i}}{2}\right)^{\frac{\Delta t_{i}+\Delta x_{i}}{2}}\left(\frac{1-v_{i}}{2}\right)^{\frac{\Delta t_{i}-\Delta x_{i}}{2}} \\
& \Delta \mathbf{S}_{X_{i-1} \rightarrow X_{i}}=-\ln \mathbf{P}_{X_{i-1} \rightarrow X_{i}}
\end{aligned}
$$

1. Stirling approximation: $\ln n!\approx n \ln n-n$
2. 2nd order expansion at stationary point $\Delta X_{i}^{*}=v_{i} \Delta t_{i}$
3. continuum approximation $X_{i} \rightarrow x(t), v_{i} \rightarrow v(t)$

$$
\Delta X_{i} \approx \dot{x}(t) \Delta t_{i}
$$

$\Delta \mathrm{S}_{X_{i-1} \rightarrow X_{i}} \approx \frac{1}{2}\left(\frac{\dot{x}(t)-v}{\sqrt{1-v^{2}}}\right)^{2} \Delta t_{i} \Longrightarrow$ Lagrangian $\mathcal{L}=\left(\frac{\dot{x}(t)-v}{\sqrt{1-v^{2}}}\right)^{2}$
Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}-\frac{\partial \mathcal{L}}{\partial x}=0 \Longrightarrow \ddot{x}\left(1-v^{2}\right)+2 \dot{x} v \frac{\partial v}{\partial t}-\left(1+v^{2}\right) \frac{\partial v}{\partial t}=0
$$

[^0]: ${ }^{1}$ Anton Zeilinger (Austria) - first realization of quantum teleportation

