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Quantum mechanics I. States

1 Pure state = ray in Hilbert space H over C

equivalence ∼ : |ψ〉 ∼ a |ψ〉 |ψ〉 ∈ H, a ∈ C
reducing ∼ by normalization−−−−−−−−−−−−−−−−−−−−→ |ψ〉 ∼ eiα |ψ〉 ‖ψ‖ = 1, α ∈ R
transition to rank one projector−−−−−−−−−−−−−−−−−−−−−→ Πψ = |ψ〉〈ψ|

{
special case of
density matrix

2 Mixed state = weighted mixture of pure states

density matrix ρ = ρ†, ρ ≥ 0, tr ρ = 1

D(H) — set of density matrices

3 State ρXY ∈ D(HXY = HX
⊗HY) of composite system is

I separable if ρXY =
∑

k wkρ
k
X

⊗ρk
Y

wk ≥ 0,
∑

k wk = 1

I entangled otherwise
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Quantum mechanics II. Observation and measurement

1 Observation = “click of detector” in subspace S ≤ H at state ρ

“detector in S ” ←→ projector ΠS

Gleason’s theorem: probability measure µρ (S) = tr (ρΠS)

special case: ρ = |ψ〉〈ψ| and S = span (|ϕ〉)
−→ Born’s rule: PBorn = |〈ϕ | ψ〉|2

2 Measurement = observation of ρ in eigenspaces of

Hermitian operator A = A† =
∑
k

akΠek (called “observable”)

I e1, e2, . . . — orthonormal basis of eigenvectors of A

I a1, a2, . . . ∈ R — spectrum of A

I ak — result of measurement at click of detector Πek

I 〈A〉ρ = tr (ρA) — expectation value of A in state ρ
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Quantum mechanics III. Time evolution

1 Evolution = unitary transformation of data
between observations at times t and t ′

I |ψt′〉 = Ut′t |ψt〉 state vector

I ρt′ = Ut′tρtU
†
t′t density matrix

|ψt〉 or ρt — state after observation at time t

|ψt′〉 or ρt′ — state before observation at time t ′

Continuum approximation −→ Schrödinger equation
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Addendum: “Entanglement builds Geometry”
Emergence of geometry within large Hilbert space

1 Decomposing H into tensor product: H =
⊗

x Hx , x ∈ X
x ’s are treated as points (bulks) of geometric space

2 Tensor network is graph G with vertex set X and edges {x , y}
3 Edges are assigned weights derived from

a measure of entanglement, typically mutual information:
I
(
ρxy
)

= S(ρx) + S
(
ρy
)
− S

(
ρxy
)
, where S(ρ) = − tr (ρ log ρ)

Metric is constructed of the weights

4 Approximate isometric embedding of G into smooth metric manifold
of as small as possible dimension using algorithms like MDS
(multidimensional scaling)

many models reproduce Bekenstein-Hawking area law (holographic principle)

Juan Maldacena and Leonard Susskind hypothesized: ER=EPR
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Introduction of continuum and differential calculus simplifies problems
at the cost of loss of completeness: classification of simple groups
continuous (2 people for ∼6 years) finite (∼100 people for ∼170 years)

Concept of group = abstraction of permutations (one-to-one mappings) of a set

additional assumption: group is
differentiable manifold finite

influence on empirical physics
strong influence no influence
Lie groups finite groups (“enormous theorem”)

4 infinite series 16 + 1 + 1 infinite series + 26 sporadic groups
+ 5 exceptionals

An,Bn,Cn,Dn An(q),Bn(q),Cn(q),Dn(q),E6(q),E7(q),E8(q),F4(q),G2(q)

E6,E7,E8,F4,G2
2An

(
q2), 2Bn

(
22n+1), 2Dn

(
q2), 3D4

(
q3)

Killing, Cartan 2E6
(
q2), 2F4

(
22n+1), 2G2

(
32n+1) — of Lee type

Zp — cyclic of prime order An — alternating

M11,M12,M22,M23,M24, J1, J2, J3, J4, Co1,Co2,Co3

Fi22,Fi23,Fi24, HS , McL, He, Ru, Suz , O ′N, HN
Ly , Th, B, M — sporadics
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Removing infinities from quantum formalism
D. Hilbert: “. . . the infinite is nowhere to be found in reality.
It neither exists in nature nor provides a legitimate basis for rational thought . . . ”

Formally
U(n) is empirically equivalent to a finite group G

I U(n) ∼= Aut (Hn)

I U(n)

using a universal set of quantum gates construct
dense in U(n) finitely generated matrix group−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ G∞

I G∞

by Maltsev’s theorem G∞ is residually finite
=⇒ rich set of homomorphisms into finite groups−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ G

In essence
natural assumption: finite groups act at fundamental level, and U(n)’s
are only continuum approximations of their unitary representations
Advantages of finite groups

I any finite group is a subgroup of a symmetric group
I any linear representation of a finite group is

F unitary
F subrepresentation of some permutation representation
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“Physical” numbers{
1 natural numbers N = {0, 1, . . .} — “counters”
2 roots of unity rk | rkk = 1 — “periodic processes”

are sufficient to represent all physically meaningful numbers:
Z = N[r2] is extension of semiring N by
2nd primitive root of unity r2 = e2πi/2 = −1︸ ︷︷ ︸

Euler’s identity

ring N[rk ]
taking fraction field−−−−−−−−−−−→ kth cyclotomic field Q(rk)

Q(rk) is dense subfield of C for k ≥ 3

Importance for quantum mechanics

minimal splitting field FG
def
== minimal extension of Q that allows

to split completely any linear representation of group G into irreps

FG ≤ Q(rk), k is some divisor of exponent of G
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Constructive representations of finite group G

1 Ω is permutation domain for G, |Ω| = N
2 module H = NN over semiring N with basis Ω

3 Hilbert space: H
N→Q(rk )−−−−−→ H

I Q (rk) contains splitting field for G
I H is principal orthant in ZN ⊂ H

Any constructive representation of G can be obtained by projection

of permutation representation of G in module H

onto some subspace of Hilbert space H over Q (rk)
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Natural SN–module −→ irreducible invariant subspaces

e1 n1

e2

n2

module H = NNtri
via

l s
ub

sp
ac

e d
im

=
1

e 1
+
e 2

standard
subspace

dim
=
N−

1

e
1 −
e
2

Canonical bases

in trivial subspace
e1 + e2 + · · ·+ eN

in standard subspace
e1 − e2
e2 − e3

...
eN−1 − eN

V. V. Kornyak (LIT, JINR) Quantum Behavior & Permutation Groups July 6, 2017 12/47



1 Quantum mechanics

2 Constructive modification

3 Modeling quantum evolution

V. V. Kornyak (LIT, JINR) Quantum Behavior & Permutation Groups July 6, 2017 13/47



Unitary transition between observations

Standard QM: unique unitary evolution Ut′t = e−iH(t′−t)y
Hamiltonian H is obtained from the principle of least actiony
Any extremal principle

(
with related computational methods:
stationary phase, saddle-point etc

)
involves

selection of small subset of dominant elements from large set of candidatesy
We assume
all unitary evolutions take part with their weights, but only a small number
of dominant evolutions are manifested in observations
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Model of quantum evolution (inspired by quantum Zeno effect)
Discrete model Continuum approximationtime

sequence t0, . . . , ti−1, ti , . . . , tn continuous interval [t0, tn] ⊆ R

unitary evolution operator Uk = U (gk) , gk ∈ G

G = {g1, . . . , gK}, finite group G, Lie group

Pi =
∑K

k=1wik tr
(
Ukρi−1U

†
kρi
)
, single-step transition probability

P0→n =
∏n

i=1 Pi , probability of trajectory

introduce entropy: same extrema but products −→ sums
single-step entropy

∆Si = − logPi Lagrangian L
entropy of trajectory

S0→n =
∑n

i=1 ∆Si action S =
∫
Ldt
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Continuum limit of discrete model

Simplifying assumptions

1 probability jump for mixed ρ: ∆t → 0⇒ P→ tr
(
ρ2
)
< 1

=⇒ assume pure states ρ = |ψ〉〈ψ|
2 Lie algebra approximation U ≈ 1+iA, A is Hermitian matrix
3 linear approximation introducing derivatives ∆X ≈ Ẋ∆t

Lagrangian

L =
〈
ψ
∣∣∣ Ȧ2

∣∣∣ψ〉− 〈ψ ∣∣∣ Ȧ∣∣∣ψ〉2←→ dispersion of Ȧ in state ψ

− i
(〈

ψ̇
∣∣∣ Ȧ∣∣∣ψ〉− 〈ψ ∣∣∣ Ȧ∣∣∣ ψ̇〉+ 2

〈
ψ
∣∣∣ Ȧ∣∣∣ψ〉〈ψ | ψ̇〉)− 〈ψ | ψ̇〉2
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Dominant unitary evolutions in symmetric group SN

Natural vectors: |n〉 =

n1
...
nN

 , |m〉 =

m1
...

mN

 , |1〉 =

1
...
1


Born rule in

1 natural representation: Pnat (n,m) =
〈n |m〉2

〈n |n〉〈m |m〉
2 standard representation:

Pstd (n,m) =

(
〈n |m〉 − 1

N〈n |1〉〈1 |m〉
)2(

〈n |n〉 − 1
N〈n |1〉〈1 |n〉

) (
〈m |m〉 − 1

N〈m |1〉〈1 |m〉
)

maximum
minimum

}
〈n |m〉 ⇐⇒ n1, . . . , nN and m1, . . . ,mN ordered

{
identically
oppositely

P∗(Un,m) is maximized by unitary operator U = P−1m Pn

Permutations Pn,Pm sort n,m
{
identically for Pnat
identically or oppositely for Pstd
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Energy of permutation
1 Planck’s formula: E = hν

energy ' frequency = number of detector clicks
time interval

= eigenvalue of Hamiltonian H = i~ lnU
2 Hamiltonian of permutation p of cycle type{

(`1 — length,m1 — multiplicity) , . . . , (`K ,mK )
}
:

Hp =

1m1⊗H`1
. . .
1mK
⊗H`K



H`k =
1
`k

0
1 . . .

`k−1

 — principal Hamiltonian of `k -cycle

3 Base (“ground state”, “zero-point”, “vacuum”) energy of permutation

εp =
1

max (`1, . . . , `K )

V. V. Kornyak (LIT, JINR) Quantum Behavior & Permutation Groups July 6, 2017 18/47



Monte Carlo simulation for S100 and S2000
|S100| ≈ 9× 10157 |S2000| ≈ 3× 105735

Four (red, blue, black, green) randomly generated dominant evolutions
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Summary

1 Quantum mechanics ←−
{

I permutations of finite sets
I projections of natural vectors

into invariant subspaces

2 Quantum randomness ←−
{
fundamental impossibility to trace
individuality of indistinguishable
objects in their evolution

3 Complex numbers
in quantum formalism

←−
{
non-constructive version
(metric completion)
of cyclotomic numbers

4 Principle of least action ←−
{continuum approximation of
selection of most likely trajectories

5 Observable behavior
of quantum system

←−
{dominants among all possible
quantum evolutions
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4 Appendix
Foundational issues of quantum mechanics
Model of time
Gauge curvature and quantum uncertainty
Continuous symmetries as approximations
Approximate transitivity of symmetric group on quantum states
Invariant inner products of natural vectors
Mach–Zehnder interferometer
Quantum Zeno effect
Lagrangian for random walk
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Physicists believe in fundamental nature of quantum randomness
M. Schlosshauer, J. Kofler, A. Zeilinger1
A Snapshot of Foundational Attitudes Toward Quantum Mechanics
Stud. Hist. Phil. Mod. Phys. 44, 222-230 (2013)

Question 1: What is your opinion about the randomness of
individual quantum events (such as the decay of a radioactive atom)?

a. The randomness is only apparent:
9%

b. There is a hidden determinism:
0%
c. The randomness is irreducible:

48%

d. Randomness is a fundamental concept in nature:
64%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
percent of votes

1Anton Zeilinger (Austria) — first realization of quantum teleportation
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Physicists do not believe in “local realism”

Question 6: What is the message of the observed violations of Bell’s inequalities?

a. Local realism is untenable:
64%

b. Action-at-a-distance in the physical world:
12%

c. Some notion of nonlocality:
36%

d. Unperformed measurements have no results:
52%

e. Let’s not jump the gun—let’s take the loopholes more seriously:
6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
percent of votes
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Epistemic view of quantum behavior
example: Spekkens’ toy model (R. W. Spekkens, 2004)

“ontic” states Ω 7−→ “epistemic” states are
described via rays in H

symmetries Sym(Ω) symmetries Aut (H)

complete information
is not available

partial information is extracted from
projections into subspaces of H

we need to specify states mapping: Ω 7−→ H
in Spekkens’ model artificial knowledge balance principle:
“. . . for every system, at every time, the amount of knowledge one possesses
about the ontic state of the system at that time must equal the amount of
knowledge one lacks”

Our assumption about the “loss of ontical information”:
quantum randomness arises from fundamental impossibility to trace individuatity
of indistinguishable objects in their evolution — only invariant relations are
available in observations
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Model of time

Fundamental (“Planck”) time: T = N (or Z)

“Empirical time”, sequence of “instants of observations”:

T = {t0, t1, . . . , ti−1, ti , . . .}
I simplest assumption: T is a subsequence of T ie ti ∈ T
I more realistic model: distribution around ti ∈ T

eg binomial distribution

Kσ (τ−ti ) =
(2σ)!

4σ(σ−ti +τ)! (σ+ti−τ)!
, ti − σ ≤ τ ≤ ti + σ

σ = 0 reproduces simplest assumption

smallest time uncertainty available in physics ∼ 1026 Planck units
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Curvature of gauge connection in continuum approximation
infinitesimal holonomy and quantum uncertainty

t1

ϕ

t2

a

b

a−1b is holonomy at t2

ϕa = U(a)ϕ

ϕb = U(b)ϕ

〈ϕa | ϕb〉 =
〈
ϕ
∣∣U (a−1b)∣∣ϕ〉

Lie algebra
approxima-

tion−−−−−−−−→≈ 〈ϕ |1+iF |ϕ〉 = 1 + i 〈ϕ |F |ϕ〉
normalization: ‖(1+iF )ϕ‖2 = 〈ϕ |(1−iF ) (1+iF )|ϕ〉 = 1 +

〈
ϕ
∣∣F 2
∣∣ϕ〉

Probability:

Pt1→t2 ≈
1 + 〈ϕ |F |ϕ〉2
1 + 〈ϕ |F 2|ϕ〉

1
1+ε
≈1−ε

−−−−−−→≈ 1−
〈
ϕ
∣∣F 2∣∣ϕ〉+ 〈ϕ |F |ϕ〉2

Entropy:

∆St1→t2 = − lnPt1→t2
ln(1+ε)≈ε−−−−−−→≈

〈
ϕ
∣∣F 2∣∣ϕ〉− 〈ϕ |F |ϕ〉2 ≡ (∆ϕF )2

∆ϕF — standard deviation (∆ϕF )2 — dispersion
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Continuous symmetries as approximations I

Group of integer lattice Zd :
Aut

(
Zd
) ∼= Zd o Gd Gd

∼= (Z2)d o Sd ≡ Z2 o Sd
Symmetric walk on Zd in continuum limit:

binomial distribution
Stirling approximation−−−−−−−−−−−−−→

Z→ R
Gauss distribution −→ product of one-dimensional
distributions −→ heat kernel

K (t, ~x) =
1

(4πt)d/2
exp
(
−x21 + x22 + · · ·+ x2d

4t

)
t ∈ R>0 xi ∈ R

Spatial symmetry group of kernel K (t, ~x)

Rd o O(d ,R) — Euclid group = semidirect product of
translations and rotations
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Continuous symmetries as approximations II
Asymmetric walk on Z
k+, k− — “right” and “left” step numbers
T = k+ + k− — total number of steps
p+, p− — probabilities: p+ + p− = 1
Embedding into continuous variables x , t, v ∈ R:
x := k+ − k− t := T v := p+ − p− (−1 ≤ v ≤ 1)
“Drift velocity” v satisfies relativistic velocity addition rule:

w = (u + v) / (1 + uv) (K.H.Knuth, 2015)

Continuous approximation of binomial distribution

P (x , t) =

√
2

π (1− v2) t
exp

{
− 1
2t

(
x − vt√
1− v2

)2
}

heat or diffusion or Fokker-Planck equation

∂P (x , t)

∂t
+ v

∂P (x , t)

∂x
=

(
1− v2

)
2

∂2P (x , t)

∂x2
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Continuous symmetries as approximations III

Approximation with respect to “Hubble time” TH : t ′ � TH

Substitutions t = TH + t ′ and x = vTH + x ′w�
P
(
x ′, t ′

)
=

m√
1− v2

exp

{
−πm

2

4

(
x ′ − vt ′√
1− v2

)2
}

+ O

(
t ′

TH

)

m =

√
2

πTH
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SN acts “approximately transitively” on pure quantum states

No of random pair (|x〉, |y〉) 1 2 3 4
S100 0.977 0.975 0.895 0.905

Pstd(Udom |x〉, |y〉)
S2000 0.999 0.998 0.997 0.998

This resembles transitivity of general unitary group on quantum states
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Icosahedral group A5
order |A5| = 60 exponent Exp(A5) = 30

Presentation by 2 generators

A5 =
〈
a, b

∣∣ a5 = b2 = (ab)3 = 1
〉

“physical incarnation”: carbon molecule
fullerene C60 ∼= Cayley graph of A5

5 irreducible representations

1, 3, 3′, 4, 5

3 primitive permutation reps

5 ∼= 1⊕ 4, 6 ∼= 1⊕ 5, 10 ∼= 1⊕ 4⊕ 5
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A5: action on icosahedron

1

5

11

7

6

10

4

12

9

2

8

3

Action on vertices is imprimitive

Imprimitivity system

B1 · · · Bi · · · B6
l l l

(1, 7) · · · (i , i + 6) · · · (6, 12)

Blocks are pairs of opposite vertices

Decomposition into irreps

12 ∼= 1⊕ 3⊕ 3′ ⊕ 5
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A5 on icosahedron: orbitals and centralizer algebra

Ω× Ω = {1, . . . , 12} × {1, . . . , 12} rank of A5 on icosahedron R = 4

A1 +A2 +A3 +A4 =



• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
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A5 on icosahedron: inner product in invariant subspaces

Invariant forms in invariant subspaces obtained
by solution of 4 systems of 4 linear equations

B1 =
1
12

(A1 +A2 +A3 +A4)

B3 =
1
4

(
A1 −A2 −

1 + 2r2 + 2r3

5
A3 +

1 + 2r2 + 2r3

5
A4

)
B3′ =

1
4

(
A1 −A2 +

1 + 2r2 + 2r3

5
A3 −

1 + 2r2 + 2r3

5
A4

)
B5 =

5
12

(
A1 +A2 −

1
5
A3 −

1
5
A4

)
r is 5th primitive root of unity
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A5 on icosahedron: scalar products of projections of natural
amplitudes
n = (n1, . . . , n12)T , m = (m1, . . . ,m12)T — natural vectors
Ψα, Φα — projections of n,m onto invariant subspaces

1 〈Φ1 |Ψ1〉 = 1
12 {A1 (m,n) +A2 (m,n) +A3 (m,n) +A4 (m,n)} ≡ 1

12L (m) L (n)

invariant L (n) =
12∑
k=1

nk is “total number of particles”

2 〈Φ3⊕3′ | Ψ3⊕3′〉 = 1
2 {A1 (m, n)−A2 (m, n)}

1 〈Φ3 | Ψ3〉 = 1
4

{
A1 (m, n)−A2 (m, n) +

√
5

5 (A3 (m, n)−A4 (m, n))
}

2 〈Φ3′ |Ψ3′〉 = 1
4

{
A1 (m, n)−A2 (m, n)−

√
5

5 (A3 (m, n)−A4 (m, n))
}

I irrationality is consequence of imprimitivity: one can not move
icosahedron vertex without simultaneous movement of its opposite
=⇒ only combination 3⊕ 3′ makes sense

3 〈Φ5 | Ψ5〉 = 5
12

{
A1 (m, n) +A2 (m, n)− 1

5 (A3 (m, n) +A4 (m, n))
}
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Mach–Zehnder interferometer

Beam-splitter S :
|↗〉 → 1√

2
(|↗〉+ i |↘〉)

|↘〉 → 1√
2

(|↘〉+ i |↗〉) S = 1√
2

[
1 i
i 1

]
Mirror M:

|↗〉 → i |↘〉
|↘〉 → i |↗〉 M =

[
0 i
i 0

]
M = S2

S generates group Z8

Scheme

implements evolution SMS |↗〉 = S4 |↗〉 = − |↗〉
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Elitzur–Vaidman interaction-free measurements. Penrose bomb tester

|↗〉 SMS−−−→ − |↗〉 P = 1
testing dud bomb

|↗〉 Π↘S−−−→ i√
2
|↘〉 P = 1

2
good bomb went off

|↗〉 Π↗S M Π↗S−−−−−−−−→ − 1
2 |↗〉 P = 1

4
bomb remains untested

|↗〉 Π↘S M Π↗S−−−−−−−−→ i
2 |↘〉 P = 1

4
bomb is good and intact
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Mach–Zehnder interferometer implements any one-qubit gate

dimU(2) = 4 =⇒ need to add 4 phase shifters ω1, ω2, ω3, ω4
to implement arbitrary unitary 2× 2 matrix U

one of 16 possibilities:

ω1 ω2

ω3

ω4

ψ1

ψ2 ψ′
1

ψ′
2

F S G M S H

UMZI = HSMGSF

F =

[
1 0
0 eiω1

]
S = 1√

2

[
1 i
i 1

]
G =

[
eiω2 0
0 eiω3

]
M =

[
0 i
i 0

]
H =

[
eiω4 0
0 1

]
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MZI implementation of arbitrary matrix U ∈ U(n)

U =
∏

1≤i<j≤n
1{1,...,î ,...,ĵ ,...,n} ⊕UMZIij

sequence of
n (n − 1)

2
Mach–Zehnder interferometers corresponding to

two-dimensional subspaces of Hn

3 3′ 1′′ 1′′′

2 1′ 3′′ 2′′′

1 2′ 2′′ 3′′′

MZI12

MZI13

MZI23

dimU(n) = n2 =⇒


excess in number of parameters

4
n (n − 1)

2
− n2 = n2 − 2n

a more economical scheme in:
M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani “Experimental Realization of
Any Discrete Unitary Operator” Phys. Rev. Lett. 73 (1994) 58

V. V. Kornyak (LIT, JINR) Quantum Behavior & Permutation Groups July 6, 2017 39/47



Constructive view on balanced Mach–Zehnder interferometer I

Mirror is square of beam-splitter: M = S2

=⇒ any sequence of MZI’s can be described by degrees of S
S generates cyclic group Z8

I Cyclotomic polynomial Φ8 (r) = 1 + r4
I primitive and nonprimitive roots of unity

r0=1

r= 1+i√
2

r2= i

−1+i√
2

= r3

−1= r4

−1−i√
2

=−r= r5

r6=−r2=−i

r7=−r3= 1−i√
2

I smallest degree of faithful permutation action = 8
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Constructive view on balanced Mach–Zehnder interferometer II

embedding into permutations
I S ←→ g = (1, 2, 3, 4, 5, 6, 7, 8)
I representation in 8D module of natural vectors N8

N = (n1, n2, n3, n4, n5, n6, n7, n8)T ∈ N8

I similarity transformation over 8th cyclotomic field:
P (g) −→ S (g) = T−1P (g)T
‖ ‖

· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1
1 · · · · · · ·


−→



1 · ·
· A ·

· ·

beam splitter S︷ ︸︸ ︷ r − r3

2
r + r3

2
r + r3

2
r − r3

2




r is 8th primitive root of unity A = diag

(
−1, r2,−r2, r3,−r

)
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Constructive view on balanced Mach–Zehnder interferometer III

quantum amplitude as projection of N into “splitter” subspace

|ψ〉 =

[
ψ1
ψ2

]
=

1
8

[
−r3 (n1 + n3 − n5 − n7) +

(
1− r2

)
(n2 − n6)

r (n1 − n3 − n5 + n7) +
(
1 + r2

)
(−n4 + n8)

]

I |ψ〉 represents with arbitrary precision any point
on the Bloch sphere — complex projective line CP1

I minuses and denominators can be eliminated
=⇒ quantum state can be expressed in terms of

natural numbers and roots of unity
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Quantum Zeno effect (“Turing paradox”)
Dynamics of quantum system under frequent observations

frequent observations may


stop (slow down) quantum evolution
— quantum Zeno effect
force prescribed evolution
— “anti-Zeno effect”

probability to observe initial state pZ (t) =
∣∣〈ψ0

∣∣ e−iHt
∣∣ψ0

〉∣∣2
short-time expansion pZ (t) = 1− t2/τ 2Z + O

(
t4
)

Zeno time τ−2Z =
〈
ψ0
∣∣H2
∣∣ψ0

〉
−
〈
ψ0
∣∣H ∣∣ψ0

〉2
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Zeno dynamics in our framework
sequence of observations Πψt0

,Πψt1
, . . . ,ΠψtN

of the same state: ψt0 = ψt1 = · · · = ψtN ≡ ψ0

t0 = 0, tN = T , ti − ti−1 = T/N — equidistant observation times

Pψti−1→ψti
≈ 1− 1

N2

(
T
τZ

)2
— short-time approximation

∆Sψti−1→ψti
≈ 1

N2

(
T
τZ

)2
— approximated one-step entropy

entropy of trajectory

Sψt0→···→ψtN
=

N∑
i=1

∆Sψti−1→ψti
≈ 1

N

(
T

τZ

)2
N → ∞−−−−−→ 0

probability of trajectory tends to 1 — the essence of Zeno effect

Pψt0→···→ψtN
≈

N∏
i=1

(
1− 1

N2

(
T

τZ

)2
)

N → ∞−−−−−→ e0 = 1
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Zeno dynamics for unbalanced beam splitter

SN =
1
2

[
r + rN−1 r − rN−1

r − rN−1 r + rN−1

]
probability of

 passage =
1
2

+
r2 + rN−2

4

reflection =
1
2
− r2 + rN−2

4
r is Nth primitive root of unity
SN generates 2D representation of ZN

0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

p
U

(t
)

Figure: pU (t) vs t for operator U = S100 ∈ U (Z100)
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Example: Lagrangian from combinatorics I
Pk1,k2,t =
t!

k1!k2!
αk1
1 α

k2
2 —

{
(1 + 1)D random walk
k1+k2 = t, α1+α2 = 1y x := k1 − k2

v := α1−α2 — “drift velocity” −1 ≤ v ≤ 1

P (x , t) =
t!(

t+x
2

)
!
(
t−x
2

)
!

(
1 + v

2

) t+x
2
(
1− v

2

) t−x
2

fundamental (“Planck”) time [0, 1, . . . ,T ]

microscopic time (“observation times”)
[t0 = 0, . . . , ti−1, ti , . . . , tn = T ]

observed values [X0, . . . ,Xi−1,Xi , . . . ,Xn]

∆ti = ti − ti−1, 1� ∆ti � T

∆Xi = Xi − Xi−1, vi — drift velosity in [ti−1, ti ]
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Example: Lagrangian from combinatorics II

PXi−1→Xi
=

∆ti !(
∆ti+∆Xi

2

)
!
(

∆ti−∆Xi
2

)
!

(
1 + vi
2

)∆ti+∆Xi
2

(
1− vi
2

)∆ti−∆Xi
2

∆SXi−1→Xi
= − lnPXi−1→Xiy
1. Stirling approximation: ln n! ≈ n ln n − n

2. 2nd order expansion at stationary point ∆X ∗i = vi∆ti

3. continuum approximation Xi → x (t) , vi → v (t)
∆Xi ≈ ẋ (t) ∆ti

∆SXi−1→Xi
≈ 1

2

(
ẋ (t)− v√
1− v2

)2

∆ti =⇒ Lagrangian L =

(
ẋ (t)− v√
1− v2

)2

Euler-Lagrange equation

d

dt

∂L
∂ẋ
− ∂L
∂x

= 0 =⇒ ẍ
(
1− v2

)
+ 2ẋv

∂v

∂t
−
(
1 + v2

) ∂v
∂t

= 0
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