On the Load Balancing Problem

Gabriel Semanišin

joint work with František Galčík and Ján Katrenič

Institute of Computer Science, Faculty of Science, P.J. Šafárik University in Košice, Slovakia

MMCP 2017

07.07.2017

< ロ > < 同 > < 回 > < 回 >

G. Semanišin (UPJŠ Košice, Slovakia)

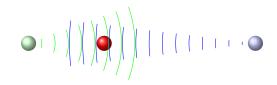
On the Load Balancing Problem

MMCP 2017 1 / 33

Wireless sensor networks (WSN)

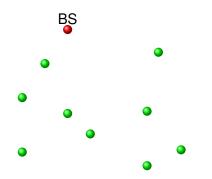
WSN is a special type of ad-hoc wireless networks such that its nodes are devices with embedded

- microcontroller,
- sensor,
- FM radio and
- opwer source.



• I > • I > •

Building WSN



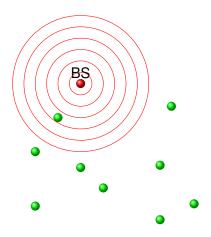
G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

э **MMCP 2017** 3/33

イロト イヨト イヨト イヨト

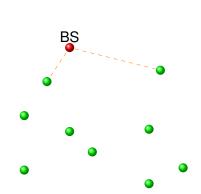
Building WSN



 Building reachability graph

G. Semanišin (UPJŠ Košice, Slovakia) On the Load Balancing Problem

Building WSN



1 Building reachability graph

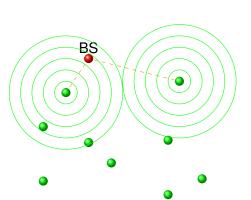
< D > < A > < B >

G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

MMCP 2017 3/33

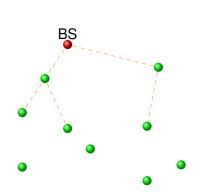
ъ



WSN

 Building reachability graph

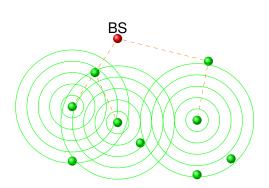
Building WSN



 Building reachability graph

< 同 > < ∃ >

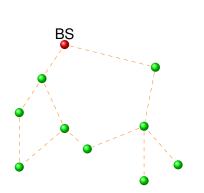
Building WSN



Building reachability graph

G. Semanišin (UPJŠ Košice, Slovakia) On the Load Balancing Problem

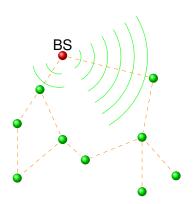
Building WSN



Building reachability graph

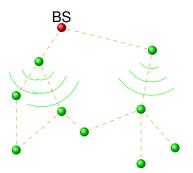
A 10

G. Semanišin (UPJŠ Košice, Slovakia) On the Load Balancing Problem



WSN

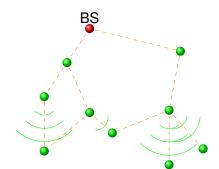
- Building reachability graph
- Building BFS tree, establishing connections



- Building reachability graph
- Building BFS tree, establishing connections

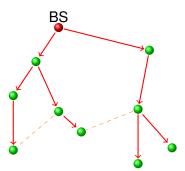
G. Semanišin (UPJŠ Košice, Slovakia) On the Load Balancing Problem

MMCP 2017 3 / 33



- Building reachability graph
- Building BFS tree, establishing connections

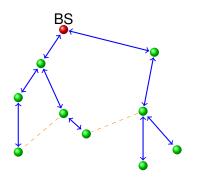
WSN



- Building reachability graph
- Building BFS tree, establishing connections

< A >

- ∃ →



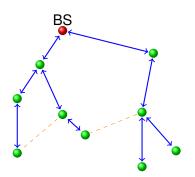
- Building reachability graph
- Building BFS tree, 2 establishing connections
- Establishing secure connections

< A >

- ∃ →

WSN

Building WSN



- Building reachability graph
- Building BFS tree, establishing connections
- Establishing secure connections
- Secure communication

• I > • I > •

WSN based on CDMA technology

WSN based on CDMA technology

- consists of node that are able to communicate each other with respect to their physical limitations and mutual distance,
- the sink of the network (base station) has relatively large computational capabilities and energy sources,
- the number of communication channels available at the sensors is limited (say 16).

< A > < > >

k-Path Vertex Cover Problem (hereditary)

Generalised Scheduling Problem

(induced hereditary reductions)

• • • • • • • • • • • • •

Graph theoretical approach

The limited number of sensor channels leads to the problem of finding BSF-tree with bounded degree.

• • • • • • • • • • • • •

Graph theoretical approach

The limited number of sensor channels leads to the problem of finding BSF-tree with bounded degree.

Bad news

The problem of finding spanning tree with bounded degree is NP-complete.

< ロ > < 同 > < 三 > < 三

Graph theoretical approach

The limited number of sensor channels leads to the problem of finding BSF-tree with bounded degree.

Bad news

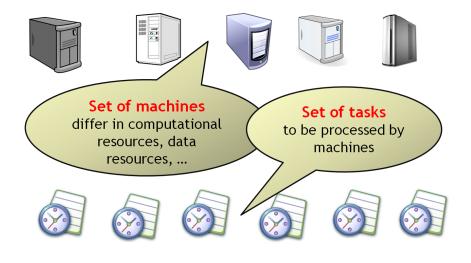
The problem of finding spanning tree with bounded degree is NP-complete.

Good news

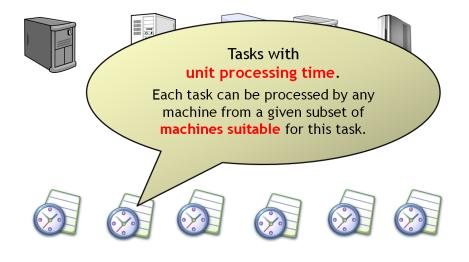
We can restrict our consideration to a bipartite graph that is formed by two layers in BSF-tree.

< ロ > < 同 > < 回 > < 回 >

Load balancing problem



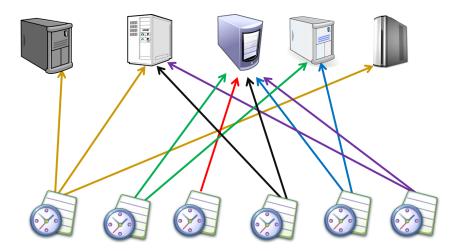
Load balancing problem



4 E b

Problem formulation

Load balancing problem

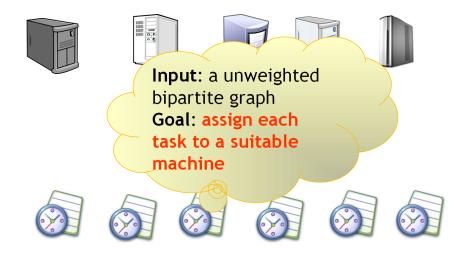


G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

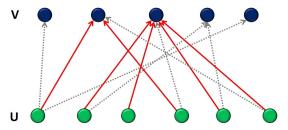
Load balancing problem



Semi-matchings

Semi-matching in a bipartite graph G = (U, V, E):

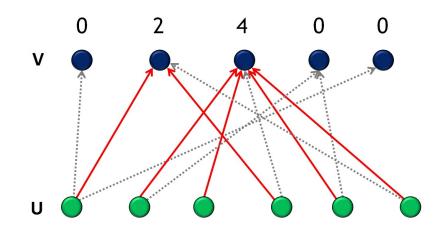
- any subset $M \subseteq E$ such that $deg_M(u) \leq 1$ for all $u \in U$
- each task is assigned to at most one machine



Maximum semi-matching - maximizes the number of assigned tasks; if there is *no other restriction* then

- any subset $M \subseteq E$ such that $deg_M(u) = 1$ for all $u \in U$
- always exists, many maximum semi-matchings

Which semi-matching is better?



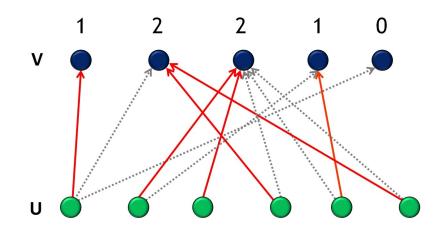
Workload distribution (sorted loads): 4, 2, 0, 0, 0

G. Semanišin (UPJŠ Košice, Slovakia) Ol

On the Load Balancing Problem

MMCP 2017 12 / 33

Which semi-matching is better?



Workload distribution (sorted loads): 2, 2, 1, 1, 0

G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

MMCP 2017 13 / 33

Optimal semi-matchings

Cost of a semi-matching *M* (the total completition time):

$$cost(M) = \sum_{v \in V} \frac{deg_M(v).(deg_M(v)+1)}{2}$$

Optimal semi-matching

- a maximum semi-matching *M* such that *cost(M)* is minimal
- a maximum semi-matching *M* such that its degree (workload) distribution is lexicographically minimal
 - shown by Bokal et al. to be equivalent with *cost*-minimal semi-matching (and also other cost measures)
 - in the previous example: (4, 2, 0, 0, 0) vs. (2, 2, 1, 1, 0)

Our optimality criterion: lexicographical minimality

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Previous work

Algorithms for computing an optimal semi-matchings:

- *O*(*n*³) by Horn (1973) and Bruno et al. (1974)
- $O(n \cdot m)$ by Lovász et al. (2006, JAlgor)
- $O(\min\{n^{3/2}, m \cdot n\} \cdot m)$ by Lovász et al. (2006, JAlgor)
- $O(n \cdot m)$ by Bokal et al. (2009) for generalized setting
- $O(\sqrt{n} \cdot m \cdot \log n)$ by Fakcharoenphol et al. (2010, ICALP)

Algorithms are based on finding (cost-reducing) alternating paths with some properties.

Maximum matchings in bipartite graphs:

- $O(\sqrt{n} \cdot m)$ by Micali and Vazirani (1980)
- O(n^ω) by Mucha and Sankowski (2004)
 - ω is the exponent of the best known matrix multiplication algorithm
 - randomized algorithm, better for dense graphs

> = nac

Our work

Can we construct an algorithm for computing an optimal semi-matching that breaks through $O(n^{2.5})$ barrier for dense graphs?

Answer: YES, we can

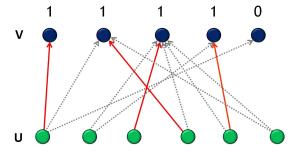
And moreover (side results):

- new approach for computing an optimal semi-matching: divide and conquer strategy instead of cost-reducing alternating paths
 - divide and conquer = more suitable for parallel computation
- **reduction** to a variant of *maximum bounded-degree semi-matching*
 - can be solved by different algorithms and approaches (e.g. maximum matchings, reduction to matrix multiplication)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Limited workload for V-vertices

Restriction: a machine can process only limited number of tasks, e.g. 1 task:



Intuition:

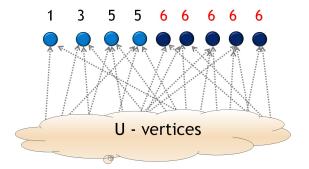
- there can be unassigned tasks
 - U-vertices not incident to a matching edge
- larger workload limit for machines = more assigned tasks

G. Semanišin (UPJŠ Košice, Slovakia) On the Load Balancing Problem

Results

Limited workload for *V*-vertices

Maximum semi-matching with workload limit 6 (max. 6 tasks per machine):



Is it necessary to increase workload limit for all *V*-vertices (machines) in order to match all *U*-vertices?

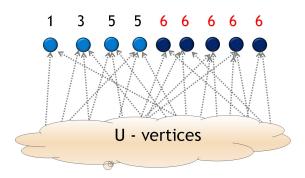
G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

MMCP 2017 18 / 33

Results

Intuition related to limited workload

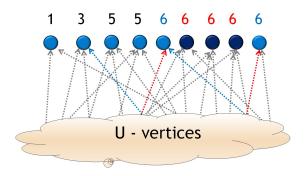


 no sense to increase the workload limit for vertices (machines) that are not fully loaded in a given maximum semi-matching

< A > < > >

Results

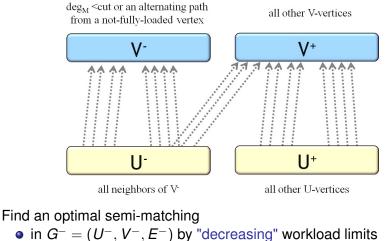
Are all fully-loaded vertices good candidates?



• **no sense** to increase the workload limit for fully loaded vertices (machines) that are endpoints of an alternating path starting in a non-fully loaded vertex

Intuition: How to divide the problem

Maximum semi-matching *M* respecting a workload limit *cut*:



• in $G^+ = (U^+, V^+, E^+)$ by "increasing" workload limits

G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (*G*, *down*, *up*, *M*_f)

- an input bipartite graph G = (U, V, E) such that
 - $\forall M \in LSM(G), \forall v \in V : down \leq deg_M(v) \leq up$
- a semi-matching *M_f* in *G* such that

• $\forall v \in V : deg_{M_f}(v) \ge down$

Goal: if $(G, down, up, M_f)$ is an input, compute an optimal semi-matching for G

Starting point: $(G, 0, \infty, \emptyset)$

- G is a graph, in which we want to find an optimal semi-matching
- all preconditions are satisfied

<ロ> <同> <同> < 同> < 日> < 同> < ○<</p>

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (*G*, *down*, *up*, *M*_f)

- an input bipartite graph G = (U, V, E) such that
 - $\forall M \in LSM(G), \forall v \in V : down \leq deg_M(v) \leq up$
- a semi-matching *M_f* in *G* such that
 - $\forall v \in V : deg_{M_f}(v) \ge down$

Divide phase for *cut* (*down* \leq *cut* \leq *up*):

 $(G, down, up, M_f)$

 $(G^-, down, cut, M_f^-)$ (G^+, cut, up, M_f^+)

Key property:

•
$$\forall M^- \in LSM(G^-), \forall M^+ \in LSM(G^+): M^- \cup M^+ \in LSM(G)$$

I SOG

Trivial case (or why is *M_f* required)

Input: $(G, down, up, M_f)$, where $up - down \le 1$ **Problem**: How to compute $M \in LSM(G)$?

First idea:

compute a maximum semi-matching M for load limit up

• it can happen that $M \notin LSM(G)$:

• $(3,2,2,2,2,2) \in LSM(G)$ vs. $(3,3,3,3,1,0) \notin LSM(G)$

Solution:

• utilizing M_f with $deg_{M_f}(v) \ge down$ for all $v \in V$, transform semi-matching M to a semi-matching M_B such that

•
$$|M| = |M_B|$$

- $\mathit{down} \leq \mathit{deg}_{\mathit{M}_{\mathit{B}}}(v) \leq \mathit{up}$ for all $v \in V$
- it can be shown that $M_B \in LSM(G)$
- transformation can be realized in the linear time

<ロ> <同> <同> < 同> < 日> < 同> < ○<</p>

Dividing subroutine - idea

Input instance: (G, down, up, M_f)

Computation:

- compute a maximum semi-matching M for workload limit cut
- 2 compute M_B by rebalancing M with respect to M_f
- **(3)** compute V^- , V^+ , U^- , and U^+ considering workload of V-vertices
- 3 compute induced subgraphs $G^- = (U^-, V^-, E^-)$ and $G^+ = (U^-, V^+, E^+)$
- compute $M_f^- = M_B \cap E^-$ and $M_f^+ = M_B \cap E^+$
- return $(G^-, down, cut, M_f^-)$ and (G^+, cut, up, M_f^+)

<ロ> <同> <同> < 同> < 日> < 同> < ○<</p>

Results

Main algorithm - Divide and conquer

Computational tree starting with $(G, 0, \infty, \emptyset)$:

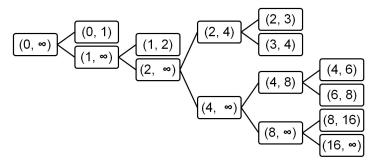


- Divide and conquer: (*down*, *up*) is always divided into 2 subintervals (of almost equal size)
- Doubling: $(down, \infty)$ is divided to $(down, 2 \cdot down)$ and $(2 \cdot down, \infty)$

Results

Main algorithm - Computation

Computational tree starting with $(G, 0, \infty, \emptyset)$:



after O(log n) levels, graphs of subproblems are empty

 there is no subgraph of *G* for which a semi-matching with load of a V-vertex at least n + 1 exists

< ロ > < 同 > < 三 > < 三

Maximum semi-matching with workload limits?

 in each step of the algorithm, we need a maximum semi-matching that respects the workload limits

Problem (Bounded-degree semi-matching)

Instance: A bipartite graph G = (U, V, E) with n = |U| + |V| vertices and m = |E| edges; a capacity mapping $c : V \to \mathbb{N}$ satisfying $\sum_{v \in V} c(v) \le 2 \cdot n$.

Question: Find a semi-matching M in G with maximum number of edges such that $deg_M(v) \le c(v)$ for all $v \in V$.

Time complexity notation: $T_{BDSM}(n, m)$ for a graph *n* vertices and *m* edges.

Total time for computing an optimal semi-matching:

 $O((n+m+T_{BDSM}(n,m)) \cdot \log n)$

Bounded-degree semi-matching

Reduction to maximum matching:

- make c(v) copies of each V-vertex v
- new graph has at most 3 · n vertices
- apply algorithm for maximum matching in $O(n^{\omega})$ by Mucha and Sankowski

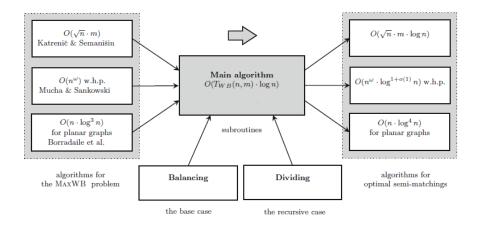
 $O(n^{\omega} \cdot \log n)$

Reduction to (1, *c*)-semi-matchings:

- (1, c)-semi-matching is bounded-degree semi-matching without condition ∑_{v∈V} c(v) ≤ 2 · n
- due to algorithm by Katrenič and G.S., (1, *c*)-semi-matching can be computed in time *O*(√*n* · *m*)

 $O(\sqrt{n} \cdot m \cdot \log n)$

Conclusion



G. Semanišin (UPJŠ Košice, Slovakia)

On the Load Balancing Problem

MMCP 2017 29 / 33

イロト イポト イヨト イヨト 二日

Related works

Semi-matching problem

- algorithm for optimal weighted semi-matching with time complexity $O(n^2.m)$ (Harada et al. 2007)
- distributed deterministic 2-approximation algorithms with time complexity O(Δ⁵) (Czygrinow et al. 2012, 2016)
- a deterministic one-pass streaming algorithm that for any 0 ≤ ε ≤ 1 uses computes an O(n^{(1-ε)/2}) and with O(log n) passes computes an O(log n) approximation (Konrad et al. 2016)

Distributed Backup Placement problem

 a distributed algorithm which finds placement in polylogarithmic time and approximation ratio O(log log n) (Halldórsson et al. 2015)

イロン 不得 とくほ とくほ とうほう

Future work

A generalisation introduced by Bokal et al.

An (f,g)-quasi-matching in a bipartite graph $G = (U \cup V, E)$: any set of edges $M \subseteq E$ such that

- each vertex $u \in U$ is incident with at most f(u) edges of M
- each vertex $v \in V$ is incident with at least g(v) edges of M.

Algorithm complexity

- Bokal et al. provided algorithm with complexity O(m.g(B)), where $g(B) = \sum_{v \in B} g(v)$
- our reduction lemma should allow an **improvement of this result** by factor log *n* and factor $\sqrt{(g(B))}$.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

References

- D. Bokal, B. Brešar, J. Jerebic:

A generalization of Hungarian method and Hall's theorem with applications in wireless sensor networks Discret. Appl. Math. 160(4–5), 460–470 (2012)

- J. Fakcharoenphol, B. Laekhanukit, D. Nanongkai Faster algorithms for semi-matching problems ACM Trans. Algorithms 10(3), 14:1–14:23 (2014)
- Katrenič, J., Semanišin, G. Maximum semi-matching problem in bipartite graphs Discuss. Math. Graph Theory 33, 559–569 (2013)
- F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching (to appear in Algorithmica, already published electronically)

(日) (日) (日) (日)

Thank you for your attention

Gabriel Semanišin

イロト イポト イヨト イヨ

e-mail: gabriel.semanisin@upjs.sk

G. Semanišin (UPJŠ Košice, Slovakia) On the

On the Load Balancing Problem

MMCP 2017 33 / 33