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Lévy flights – generalization of random walks with a step
distribution p(l) ∝ l−1−σ with the step index 0 < σ < 2.



Lévy flights and random walks

Fractional derivatives

⊲
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Lévy flights – generalization of random walks with a step
distribution p(l) ∝ l−1−σ with the step index 0 < σ < 2.

PDF of the position r of a test particle obeys the Fokker-Planck
equation

∂P

∂t
= −Dσ(−∇2)σ/2P +D∇2P .
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PDF of the position r of a test particle obeys the Fokker-Planck
equation

∂P

∂t
= −Dσ(−∇2)σ/2P +D∇2P .

Fractional power of ∇2 usually defined through the Fourier
transform: (−∇2)σ/2 → kσ.
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Lévy flights – generalization of random walks with a step
distribution p(l) ∝ l−1−σ with the step index 0 < σ < 2.

PDF of the position r of a test particle obeys the Fokker-Planck
equation

∂P

∂t
= −Dσ(−∇2)σ/2P +D∇2P .

Fractional power of ∇2 usually defined through the Fourier
transform: (−∇2)σ/2 → kσ.

The ordinary diffusion term is brought about by the small-scale
part of the step distribution.
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Epidemic models: infected individual can infect other individuals
only after a certain incubation time (waiting time).
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Epidemic models: infected individual can infect other individuals
only after a certain incubation time (waiting time).

Long tails in waiting-time distribution

p (∆t) ∝ (∆t)−1−α
.
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Epidemic models: infected individual can infect other individuals
only after a certain incubation time (waiting time).

Long tails in waiting-time distribution

p (∆t) ∝ (∆t)−1−α
.

Memory effects follow. May be described by integral operators,
which give rise to fractional differentiation and integration.



Fractional derivatives

Fractional derivatives
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(x− t)1+α
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Fractional derivative of Riemann-Liouville

(

Dα
+f

)

(x) =
1

Γ(1− α)

d

dx

x
∫

−∞

f(t)dt

(x− t)α

Fractional derivative of Marchaud

(

D
α
+f

)

(x) =
α

Γ(1− α)

x
∫

−∞

f(x)− f(t)

(x− t)1+α
dt .

Easy to handle through Laplace transform:

L
(

Dα
+f

)

(s) = sαLf(s) .
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Deform right-hand side of the diffusion equation

∂tP (t) =
[

−Dσ(−∇2)σ/2 +D∇2
] (

D1−α
+ P

)

(t) .
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Deform right-hand side of the diffusion equation

∂tP (t) =
[

−Dσ(−∇2)σ/2 +D∇2
] (

D1−α
+ P

)

(t) .

The Green function of this fractional differential equation

∆ML
12 (t,k) = θ(t)Eα

[(

−Dσk
σ −Dk2

)

tα
]

.

is well-behaved at the time origin.
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Deform right-hand side of the diffusion equation

∂tP (t) =
[

−Dσ(−∇2)σ/2 +D∇2
] (

D1−α
+ P

)

(t) .

The Green function of this fractional differential equation

∆ML
12 (t,k) = θ(t)Eα

[(

−Dσk
σ −Dk2

)

tα
]

.

is well-behaved at the time origin.
Definition of the Mittag-Leffler function Eα by power series and
integral representation:

Eα(z) =
∞
∑

n=0

zn

Γ(αn+ 1)
=

1

2πi

∫

ds
essα−1

sα − z
.
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Let ϕ[Ã] be solution of the generic fractional kinetic equation

∂ϕ

∂t
= D1−α

+ V (ϕ) = −KD1−α
+ ϕ+D1−α

+ U(ϕ) +D1−α
+ Ã ,

where K = Dk2 +Dσk
σ (Fourier space).
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Define generating function of solutions of the kinetic equation

G(A) = eAϕ[Ã] .
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Let ϕ[Ã] be solution of the generic fractional kinetic equation

∂ϕ

∂t
= D1−α

+ V (ϕ) = −KD1−α
+ ϕ+D1−α

+ U(ϕ) +D1−α
+ Ã ,

where K = Dk2 +Dσk
σ (Fourier space).

The linear part of the right-hand side yields the Mittag-Leffler
propagator

∆ML
12 (t,k) = θ(t)Eα

[

−
(

Dk2 +Dσk
σ
)

tα
]

.

Define generating function of solutions of the kinetic equation

G(A) = eAϕ[Ã] .

Note that there is no randomness yet, Ã is a fixed function.
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Perturbation expansion given by the S-matrix functional

G(A) = exp

(

δ

δϕ
∆ML

12

′ δ

δϕ̃

)
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[

ϕ̃D1−α
+ U(ϕ) + ϕ̃D1−α

+ Ã+ Aϕ
]∣

∣

∣

ϕ̃=ϕ=0

where ∆ML
12

′

(t,x; t,x′) ≡ 0.
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Perturbation expansion given by the S-matrix functional

G(A) = exp

(

δ

δϕ
∆ML

12

′ δ

δϕ̃

)

exp
[

ϕ̃D1−α
+ U(ϕ) + ϕ̃D1−α

+ Ã+ Aϕ
]∣

∣

∣

ϕ̃=ϕ=0

where ∆ML
12

′

(t,x; t,x′) ≡ 0. This is a shorthand for the normal form of the
interaction functional. The interaction functional is non-local in time!

Contraction with the attached ML-propagator saves our day (Fourier-Laplace
space)

∆ML
12 (t,k)D1−α

+ →
sα−1

sα +Dk2 +Dσkσ
s1−α

=
1

sα +Dk2 +Dσkσ
= ∆α

12(s,k) .

The final perturbation expansion contains vertices local in time only!
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Generating function with nonlocal interaction

G(A) = exp

(

δ

δϕ
∆′ML

12

δ

δϕ̃

)

exp
[

ϕ̃D1−α
+ U(ϕ) + ϕ̃D1−α

+ Ã+ Aϕ
]∣

∣

∣

ϕ̃=ϕ=0
.

Integration by parts yields

ϕ̃D1−α
+ U(ϕ) = U(ϕ)D1−α

−
ϕ̃ =

∫

dtU(ϕ(t))



−
1

Γ(α)

d

dt

∞
∫

t

du
ϕ̃(u)

(t− u)1−α



 .
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Generating function with nonlocal interaction
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−
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In terms of the new variable φ̃ = D1−α
−

ϕ̃ the generating function

G(A) = exp

(

δ

δϕ
∆α

12
′
δ

δφ̃

)

exp
[

φ̃U(ϕ) + Ãφ̃+ Aϕ
]∣

∣

∣

φ̃=ϕ=0

contains a local interaction functional.
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Langevin equation is the fractional kinetic equation

∂ϕ

∂t
= D1−α

+ V (ϕ) = −KD1−α
+ ϕ+D1−α

+ U(ϕ) +D1−α
+ f ,
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Langevin equation is the fractional kinetic equation

∂ϕ

∂t
= D1−α

+ V (ϕ) = −KD1−α
+ ϕ+D1−α

+ U(ϕ) +D1−α
+ f ,

with the white-in-time Gaussian noise

〈f(t,x)f(t′,x′)〉 = δ(t− t′)D(x− x
′) , 〈f〉 = 0 .
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Langevin equation is the fractional kinetic equation

∂ϕ

∂t
= D1−α

+ V (ϕ) = −KD1−α
+ ϕ+D1−α

+ U(ϕ) +D1−α
+ f ,

with the white-in-time Gaussian noise

〈f(t,x)f(t′,x′)〉 = δ(t− t′)D(x− x
′) , 〈f〉 = 0 .

Integration of the generating functional over noise yields

G(A) = exp

(

δ

δϕ
∆α

12
′
δ

δφ̃

)

exp

[

φ̃U(ϕ) +
1

2
φ̃Dφ̃+ Aϕ

]

∣

∣

∣

φ̃=ϕ=0



De Dominicis-Janssen action
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With the use of the identity

exp

(

δ

δϕ
∆α

12
′
δ

δφ̃

)

=

∫

Dφ

∫

Dϕ̃ exp

[

ϕ̃
(

−Dα
+ −K

)

φ+ φ
δ

δϕ
+ ϕ̃

δ

δφ̃

]
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functional integral with the dynamic action is obtained:
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With the use of the identity

exp

(

δ

δϕ
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′
δ
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)

=

∫

Dφ

∫

Dϕ̃ exp

[

ϕ̃
(

−Dα
+ −K

)

φ+ φ
δ

δϕ
+ ϕ̃

δ

δφ̃

]

functional integral with the dynamic action is obtained:

G(A) =

∫

Dφ

∫

Dϕ̃ exp

[

ϕ̃
(

−Dα
+ −K

)

φ+ ϕ̃U(φ) +
1

2
ϕ̃Dϕ̃+ Aφ

]

The usual time derivative is often generated by fluctuations, thus the generic
propagator is

∆α
12(s,k) =

1

c1s+ cαsα +Dk2 +Dσkσ
.
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Renormalization requires homogeneity of the propagator,
separate the fractional terms to interaction:

S0 = ϕ̃
(

−c1∂t +D∇2
)

φ+
1

2
ϕ̃Dϕ̃ ,

SI = ϕ̃
(

−cαD
α
+ −Dσ(−∇2)σ/2

)

φ+ ϕ̃U(φ)
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The other way round produces renormalized theory with
divergences in the limit σ → 2, α → 1.
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Renormalization requires homogeneity of the propagator,
separate the fractional terms to interaction:
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Basic rule: fractional terms are not generated by
renormalization, local terms may be generated.
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Renormalization requires homogeneity of the propagator,
separate the fractional terms to interaction:

S0 = ϕ̃
(

−c1∂t +D∇2
)

φ+
1

2
ϕ̃Dϕ̃ ,

SI = ϕ̃
(

−cαD
α
+ −Dσ(−∇2)σ/2

)

φ+ ϕ̃U(φ)

The other way round produces renormalized theory with
divergences in the limit σ → 2, α → 1.

Basic rule: fractional terms are not generated by
renormalization, local terms may be generated.

Large-scale relevance of local and fractional terms depends on
fluctuations: renormalization produces changes in scaling
dimensions of local terms.
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Meet with effective propagators with the structure

(cαs
α +Dσk

σ)n

(c1s+Dk2)n+1 .

Small 1− α, 2− σ are analytic regulators, deviation from the
critical dimension ε = dc − d is also a regulator: analytic
renormalization is called for.

With a single regulator (ε) the scheme of minimal subtractions
(MS) is effective and popular.

In case of several regulators the ray scheme is widely used: all
regulators of the same order, just one independent remains and
then proceed by MS with respect to it.

Although popular, this approach is dubious.
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In analytic renormalization all singularities in regulators are
removed.

Renormalized Green functions are analytic in all regulators

Construct the subtraction operator, e.g., with the use of Taylor
expansion: the subsequent R operation removes all UV
divergences, i.e. singularities in regulators.

Basic theorem of R-theory: Bogolyubov-Parasyuk R operation
produces Green functions analytic in regulators.

The MS ray scheme does not share this property.
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A divergent (sub)graph gives rise to a factor of the form (n, m, l – integers)

1

nε+m(2− σ) + 2l(1− α)
=

1

ε

1

n+mζ + 2lξ
.

Contribution of a graph to renormalization constant: product of these
multiplied by a function analytic in ε, 2− σ and 1− α at the origin.

In the ray scheme the ratios ζ and ξ are finite, divergences are poles in ε.

In the MS scheme applied with respect to ε not all factors (n+mζ + 2lξ)−1

are removed.

Result: coefficient functions of the renormalization group are meromorphic
functions in ε, 2− σ and 1− α, not analytic as they should be!

The MS ray scheme is at least dubious. Use the the normalization point
scheme instead.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.

� Fractional differential operators are not renormalized.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.

� Fractional differential operators are not renormalized.

� IR relevance of local and non-local terms should be assessed
in the renormalized theory.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.

� Fractional differential operators are not renormalized.

� IR relevance of local and non-local terms should be assessed
in the renormalized theory.

� Fractional differential operators give rise to multi-parameter
regularization.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.

� Fractional differential operators are not renormalized.

� IR relevance of local and non-local terms should be assessed
in the renormalized theory.

� Fractional differential operators give rise to multi-parameter
regularization.

� MS ray scheme is not consistent beyond one-loop order.



Conclusion

Fractional derivatives

Kinetic equation

Fractional Langevin

equation

Renormalization

Conclusion

⊲ Conclusion

MMCP 2017 July 3-7, 2017 Fractional SFT – slide 16

� Fractional stochastic differential equation gives rise to
stochastic field theory with fractional derivatives.

� Renormalization produces local counterparts of fractional
derivatives with nontrivial scaling dimensions.

� Fractional differential operators are not renormalized.

� IR relevance of local and non-local terms should be assessed
in the renormalized theory.

� Fractional differential operators give rise to multi-parameter
regularization.

� MS ray scheme is not consistent beyond one-loop order.

� In multiloop calculations dimensional-analytic regularization
with normalization-point subtractions is the safe (and
technically challenging) way to proceed.
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