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QCD phase diagram

extreme conditions: high temperature and/or density

early Universe

heavy-ion collisions

neutron stars

no first-principle determination at finite density :

lattice QCD and the sign problem
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Lattice QCD at nonzero chemical potential

QCD action (schematically)

S = SYM +

∫

d4x ψ̄Mψ

QCD partition function

Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SYM detM(µ)

fermion determinant is complex

[detM(µ)]∗ = detM(−µ∗) ∈ C

no positive weight in path integral

⇒ sign problem
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Outline

chemical potential continuum/lattice

remarks about sign/overlap/Silver Blaze problems

complex Langevin dynamics & Lefschetz thimbles

(towards) QCD

for review and references (and exercises!), see

Introductory lectures on lattice QCD at nonzero baryon number

J. Phys. Conf. Ser. 706 (2016) 022004 [arXiv:1512.05145 [hep-lat]]
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Chemical potential

phase diagram: introduce chemical potential µ

couples to conserved charge (baryon number)

n ∼ ψ†ψ = ψ̄γ4ψ = j4

temporal component of current jν = ψ̄γνψ

on the lattice: fermion hopping terms jν ∼ κψ̄xγνψx+ν

modify temporal hopping terms:

forward hopping: κeµ

backward hopping: κe−µ

⇒ exactly conserved (Noether) charge at finite lattice
spacing Hasenfratz & Karsch 83
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Chemical potential on the lattice

chemical potential introduces an imbalance between
forward and backward hopping

forward hopping (quark)
⇒ favoured as eµnτ

backward hopping (anti-quark)

⇒ disfavoured as e−µnτ

closed worldline
⇒ µ dependence cancels

exactly

µ dependence only remains when worldline wraps around
time direction

eµNτ = eµ/T e−µNτ = e−µ/T
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Chemical potential on the lattice

suggestion:

µ is effectively a boundary condition

make explicit:

field redefinition ψx = e−µτψ′
x ψ̄x = eµτ ψ̄′

x

µ dependence drops from all terms ψ̄xe
µψx+4 etc

(and also from spatial terms)

but appears as a boundary condition

ψNτ
= −ψ0 ⇒ ψ′

Nτ
= −eµNτψ′

0

wrapping around the temporal direction
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Chemical potential on the lattice

imbalance leads to fundamental issue: sign problem!

at µ = 0: quark matrix M

detM † = det (γ5Mγ5) = detM = (detM)∗

real determinant “γ5 hermiticity”

at µ 6= 0:

detM †(µ) = det γ5M(−µ∗)γ5 = detM(−µ∗) = [detM(µ)]∗

complex determinant

no real weight: numerical methods break down

note: real determinant for imaginary chemical potential

Roberge & Weiss 86, Lombardo 00, de Forcrand & Philipsen 03-12
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Sign problem

sign problem not specific for QCD

appears generically in theories with imbalance

in both fermionic and bosonic theories
i.e. not due to anti-commuting nature of fermions

also in condensed-matter models, e.g. Hubbard model
away from half-filling

understanding of sign problem relevant across physics

generic solution to sign problem not expected: NP hard

Troyer & Wiese 04

more and more solutions to specific theories available
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Towards the Silver Blaze problem

consider massive particle with mass m at low temperature:

µ is the change in free energy when a particle carrying
the corresponding quantum number is added

i.e. energy cost for adding one particle

if µ < m: not enough energy to create a particle ⇒ no
change in groundstate

if µ > m: plenty of energy available ⇒ nonzero density

onset at µ = µc(= m) at zero temperature

generic principle of statistical mechanics

⇒ demonstrate for free fermions
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Free fermions: onset at low temperature

standard thermal field theory: free fermion gas

lnZ = 2V

∫

d3p

(2π)3

[

βωp + ln
(

1 + e−β(ωp−µ)
)

+ ln
(

1 + e−β(ωp+µ)
)]

density: ωp =
√

p2 +m2

〈n〉 = T

V

∂ lnZ

∂µ
= 2

∫

p

[

1

eβ(ωp−µ) + 1
− 1

eβ(ωp+µ) + 1

]

low-temperature limit: T → 0, β → ∞
case 1:

µ < m : 〈n〉 ∼ 2

∫

p

[

e−β(ωp−µ) − e−β(ωp+µ)
]

→ 0

(anti)particles thermally excited but Boltzmann
suppressed
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Free fermions: onset at low temperature

case 2: µ > m

Fermi-Dirac distribution become step function at T = 0

µ > m : 〈n〉 ∼ 2

∫

p

Θ(µ−ωp) =

(

µ2 −m2
)3/2

3π2
Θ(µ−m)

filled Fermi sphere:

nonzero density

onset at µ = µc = m

no µ dependence
below onset

µ/m

<n>

1

Silver Blaze region
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How hard is the sign problem?

partition function: Z =
∫

DUDψ̄Dψ e−S =
∫

DU e−SB detM

complex weight due to complex determinant

[detM(µ)]∗ = detM(−µ∗)

write detM = | detM |eiϕ and absorb phase in observable

〈O〉full =
∫

DU e−SB detM O
∫

DU e−SB detM
=

∫

DU e−SB | detM | eiϕO
∫

DU e−SB | detM | eiϕ

=
〈eiϕO〉pq
〈eiϕ〉pq

expectation values are taken wrt phase-quenched weight

well-defined in principle . . .
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Sign and overlap problems

what is average phase factor 〈eiϕ〉pq?

〈eiϕ〉pq =

∫

DU e−SB | detM | eiϕ
∫

DU e−SB | detM | =
Zfull

Zpq
= e−Ω∆f → 0

ratio of two partition functions! note: Zfull ≤ Zpq

Z = e−F/T = e−Ωf Ω = NτN
3
s

average phase factor → 0 in thermodynamic limit!
(unless f = fpq)

this is the overlap problem: sampling with the ‘wrong’ weight

exponentially hard
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Origin of overlap problem

phase-quenched physics is different!

consider two flavours: [detD(µ)]2 vs |detD(µ)|2

recall D†(µ) = γ5D(−µ∗)γ5

then |detD(µ)|2 = detD(−µ) detD(µ)

⇒ isospin chemical potential! up/down quark: ±µ

lightest particle with nonzero isospin: pion

lightest particle with nonzero baryon number: nucleon
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Onset, phase-quenching and Silver Blaze

full QCD with quark chemical potential:

onset when µ = [lightest baryon mass - binding energy]/3
nuclear matter

phase-quenched QCD with isospin chemical potential:

onset when µ equals [pion mass]/2 (nonzero isospin)
pion condensation
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Onset, phase-quenching and Silver Blaze

full QCD with quark chemical potential:

onset when µ = [lightest baryon mass - binding energy]/3
nuclear matter

phase-quenched QCD with isospin chemical potential:

onset when µ equals [pion mass]/2 (nonzero isospin)
pion condensation

0 < µ < mπ/2 full = phase-quenched at T = 0

no severe sign problem, but no interesting physics

mπ/2 < µ . mB/3 severe sign problem

strong cancelations required to cancel µ dependence
of phase-quenched theory
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Onset, phase-quenching and Silver Blaze

average phase
factor at T = 0

0 µ
0

1

<e
iφ>

pq

mπ/2

perform lattice simulations in phase-quenched theory

extract full QCD results

⇒ requires severe cancelations of the µ dependence in
region mπ/2 < µ . mB/3

⇒ Silver Blaze problem: get cancelations right

most straightforward numerical methods will fail this test!
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Complex measure

complex weight

detM(µ) = | detM(µ)|eiθ

cancelation between configurations with ‘positive’ and
‘negative’ weight

dominant configurations
in the path integral? x

 x)Reρ(  

take the complexity seriously!
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): complex Langevin

Parisi 83, Klauder 83

deformation of integration contour: Lefschetz thimbles

Airy 1838, Witten 10
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Langevin versus Lefschetz

GA, 1308.4811

GA, Bongiovanni, Seiler, Sexty, 1407.2090

GA, Giudice, Seiler, 1306.3075
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Complex Langevin dynamics

main idea:

generate field configurations using stochastic process

ż = −∂zS + η 〈η(t)η(t′)〉 = 2δ(t− t′)

reach equilibrium distribution à la Brownian motion

no importance sampling required

Langevin drift K = −∂zS derived from complex weight:

explore complexified configurations

one degree of freedom: z → x+ iy

real scalar field: φ(x) → φR(x) + iφI(x)

gauge link U : SU(3) ⇒ SL(3,C)

rely on holomorphicity
Dubna, August 2017 – p. 22



Complex Langevin dynamics

Langevin dynamics:
zero-dimensional example

complex action S(z)

ż = −∂zS(z) + η z = x+ iy

associated Fokker-Planck equation (FPE)

Ṗ (x, y; t) = [∂x(∂x + Re∂zS(z)) + ∂yIm∂zS(z)]P (x, y; t)

(equilibrium) distribution in complex plane: P (x, y)

observables

〈O(x+ iy)〉 =
∫

dxdy P (x, y)O(x+ iy)
∫

dxdy P (x, y)

P (x, y) real and non-negative: no sign problem

criteria for correctness
Dubna, August 2017 – p. 23



Complex Langevin dynamics

applicability for holomorphic actions:

check criteria a posteriori GA, Seiler & Stamatescu 09

gauge cooling essential Seiler, Sexty & Stamatescu 12

dynamical stabilisation Attanasio & Jäger 17

successful applications to various models, including with
phase transitions and severe sign problems

but success not guaranteed (criteria)

open question: meromorphic drift

with weight detM : drift contains TrM−1

poles: problems may appear Mollgaard & Splittorff 13

analysis GA, Seiler, Sexty & Stamatescu 17

Nagata, Nishimura & Shimasaki 16, . . .
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Lefschetz thimbles

generalised saddle point integration/steepest descent:

extend definition of path integral

Chern-Simons theories

mathematical foundation in Morse theory

formulation:

find all stationary points zk of holomorphic action S(z)

paths of steepest descent: stable thimbles Jk

paths of steepest ascent: unstable thimbles Kk

ImS(z) constant along thimble k

integrate over stable thimbles, with proper weighting
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Lefschetz thimbles

generalised saddle point integration/steepest descent:

integrate over stable thimbles

Z =
∑

k

mke
−iImS(zk)

∫

Jk

dz e−ReS(z)

=
∑

k

mke
−iImS(zk)

∫

ds z′(s)e−ReS(z(s))

intersection numbers: mk = 〈C,Kk〉
(C = original contour, Kk = unstable thimble)

residual sign problem: complex Jacobian J(s) = z′(s)

global sign problem: phases e−iImS(zk)
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Langevin versus Lefschetz

two approaches in the complex plane:

Langevin

〈O(z)〉 =
∫

dxdy P (x, y)O(x+ iy)
∫

dxdy P (x, y)

Lefschetz

〈O(z)〉 =
∑

kmke
−iImS(zk)

∫

Jk

dz e−ReS(z)O(z)
∑

kmke−iImS(zk)
∫

Jk

dz e−ReS(z)

two- versus one-dimensional

real versus residual/global phases

relation? validity? ⇒ simple models
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Quartic model

Z =

∫ ∞

−∞

dx e−S S(x) =
σ

2
x2 +

λ

4
x4

complex mass parameter σ = A+ iB, λ ∈ R

often used toy model Ambjorn & Yang 85, Klauder & Petersen 85,

Okamoto et al 89, Duncan & Niedermaier 12

essentially analytical proof for CL GA, Giudice, Seiler 13

CL gives correct result for all observables 〈xn〉
provided that A > 0 and A2 > B2/3

based on properties of the distribution P (x, y)

follows from classical flow or directly from FPE
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Quartic model

classical flow
(A = B = 1)

-2 -1 0 1 2
x

-2

-1

0

1

2

y

determine where drift KI = −Im∂zS(z) vanishes
(blue lines)

at the extrema: impenetrable barrier (for real noise)

distribution localised between dashed lines
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Quartic model

numerical solution of FPE for P (x, y)

distribution is localised in a strip around real axis

P (x, y) = 0 when |y| > y− with y− = 0.303 for σ = 1 + i
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Langevin versus Lefschetz

Lefschetz thimbles for quartic model

critical points:

z0 = 0

z± = ±i
√

σ/λ

thimbles can be
computed
analytically

ImS(z0) = 0

ImS(z±) = −AB/2λ
-2 -1 0 1 2

x
-2

-1

0

1

2

y

stable thimble
unstable thimble
not contributing

σ = 1+i, λ = 1

for A > 0: only 1 thimble contributes

integrating along thimble gives correct result, with
inclusion of complex Jacobian
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Quartic model: thimbles

compare thimble and FP distribution P (x, y)

-1 -0.5 0 0.5 1
x

-0.3

-0.15

0

0.15

0.3

y

> 0.98 local saddle point of P(x,y) 
thimble

σ = 1+i, λ = 1

thimble and P (x, y) follow each other
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Quartic model: thimbles

compare thimble and FP distribution P (x, y)

-1.5 -1 -0.5 0 0.5 1 1.5
x

-0.3

-0.15

0

0.15

0.3

y

> 0.5  global max of P(x,y)
thimble

σ = 1+i, λ = 1

thimble and P (x, y) follow each other

however, weight distribution quite different

intriguing result: complex Langevin process finds the
thimble – is this generic?
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Langevin versus Lefschetz

compare evolution equations in more detail

complex Langevin (CL) dynamics

ẋ = −Re ∂zS(z) + η ẏ = −Im ∂zS(z)

Lefshetz thimble dynamics, with z(t→ ∞) = zk

ẋ = −Re ∂zS(z) ẏ = +Im ∂zS(z)

⇒ change in sign for y drift

Langevin:
stable and unstable fixed points

unstable runaways as y → ±∞

thimbles:
saddle points

stable thimbles coming from y → ±∞
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Langevin versus Lefschetz

deform quartic model with linear term, break symmetry

S(z) =
σ

2
z2 +

1

4
z4 + hz

h ∈ C

Langevin flow for
σ = 1, h = 1 + i

-3 -2 -1 0 1 2 3
x

-2

-1

0

1

2

y

one stable/two unstable fixed points for CL

y → −∞ classical runaway trajectory

two contributing thimbles (global phase problem)
due to Stokes’ phenomenon
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Langevin versus Lefschetz

histogram of P (x, y) collected during CL simulation
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Langevin versus Lefschetz

comparison of

Langevin distribution

with thimbles

-2 -1 0 1
x

-1

-0.5

0

y

thimbles: both saddle points contribute

CL: unstable fixed point avoided

no role for second thimble in Langevin

⇒ distributions manifestly different
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Langevin and Lefschetz

exploring the complex plane: thimbles and Langevin

location of distributions related but not identical

weight distributions typically different

repulsive fixed points in Langevin dynamics avoided

thimbles end on zeroes of measure/poles of drift
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(Towards) QCD

Complex Langevin dynamics

Aarts, Stamatescu, 0807.1597

Seiler, Sexty, Stamatescu, 1211.3709

Sexty, 1307.7748

GA, Seiler, Sexty, Stamatescu, 1408.3770

GA, Attanasio, Jäger, Sexty, 1606.05561
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QCD phase structure

Columbia plot: order of thermal transition at µ = 0

phys.
point

0
0

N  = 2

N  = 3

N  = 1

f

f

f

m s

s
m

Gauge

 m   , mu

1st

2nd order
O(4) ?

chiral
2nd order
Z(2)

deconfined
2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞
Pure
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QCD with heavy quarks

heavy quark corner of Columbia plot

first order transition to deconfined phase

Polyakov loop order parameter

quark determinant simplifies considerably

hopping expansion (LO): only straight quark world lines

fermion determinant

detM =
∏

x

det
(

1 + heµ/TPx

)2 (

1 + he−µ/TP−1
x

)2

Px = untraced Polyakov loop h = (2κ)Nτ

determine phase diagram in heavy quark sector

widely used limit of QCD to test methods
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Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): complex Langevin update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-Mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SYM + SF) SF = − ln detM
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Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): complex Langevin update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-Mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SYM + SF) SF = − ln detM

complex action: K† 6= K ⇔ U ∈ SL(N,C)

deviation from SU(N ): unitarity norms

1

N
Tr

(

UU † − 11
)

≥ 0
1

N
Tr

(

UU † − 11
)2 ≥ 0
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Gauge theories

deviation from SU(3): unitarity norm
1

3
TrUU † ≥ 1

heavy dense QCD, 44 lattice with β = 5.6, κ = 0.12, Nf = 3

GA & Stamatescu 0807.1597
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Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors
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Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors

in practice this is not the case

⇒ unitary submanifold is unstable!

process will not stay close to SU(N )

distributions not localised

wrong results in practice, non-analytic around µ2 ∼ 0

⇒ controlled by gauge cooling, dynamical stabilisation, . . .
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QCD with heavy quarks

expectations for phase diagram

two transitions:

full Wilson gauge action is included

thermal deconfinement transition (as in pure glue)

detM =
∏

x

det
(

1 + heµ/TPx

)2
det

(

1 + he−µ/TP−1
x

)2

µ-driven transition: 2κeµ ≷ 1

critical chemical potential for onset at µ0c = − ln(2κ)

determine phase diagram by direct simulation in T −µ plane
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Complex Langevin dynamics

QCD with static quarks or heavy dense QCD (HDQCD)

simulation details

lattice coupling/spacing: β = 5.8 a ∼ 0.15 fm

hopping parameter: κ = 0.04 µ0c = − ln(2κ) = 2.53

spatial volume 63, 83, 103

Nτ = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 24 28

T ∼ 48 . . . 671 MeV

direct simulation in T − µ plane (∼ 880 parameter
combinations)

observables: Polyakov loop, quark density
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Heavy dense QCD

Polyakov loop

〈P 〉 = 0 at low T, µ: confinement

〈P 〉 6= 0 at high T, µ: deconfinement

µ > µ0c at T = 0: saturation, lattice artefact, unphysical
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Heavy dense QCD

density

〈n〉 = 0 at µ = 0

〈n〉 rises slowly at high T , onset at low T

µ > µ0c at T = 0: saturation, lattice artefact, unphysical
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Heavy dense QCD

attempt to determine the phase boundary

Polyakov loop susceptibility χP ∼ 〈P 2〉 − 〈P 〉2

signal not very clear
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Heavy dense QCD

better estimate of boundary: Binder cumulant B

for order parameter O

B = 1− 〈O4〉
3〈O2〉2

then

〈O〉 = 0 ⇔ B = 0 〈O〉 6= 0 ⇔ B =
2

3

(assume Gaussian fluctuations)
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Heavy dense QCD

Binder cumulant

B ∼ 0 at low T, µ

B ∼ 2/3 at high T, µ
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Heavy dense QCD

Binder cumulant: phase boundary

determine boundary by B = 1/3

fixed lattice spacing:
less resolution at higher temperature T ∼ 1/Nτ
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Heavy dense QCD phase diagram

use simple Ansätze for
phase boundary

x =
(

µ/µ0c
)2

A : Tc(µ) =
∑

k

akx
k

B : Tc(µ) =
∑

k

bk(1− x)k

C : Tc(µ) = B + c0(1− x)α

simple fits up to µ4 (2 parameters) are sufficient

no sign for nonanalyticity at T = 0 from data yet
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Heavy dense QCD phase diagram

possible to determine and parametrise boundary

many things to improve

fixed lattice spacing

affects thermal transition

order of transition

vary κ: critical endpoints

extension to (more) dynamical quarks

HDQCD is starting point of systematic hopping
parameter expansion Philipsen et al 10-16

all-orders expansion GA, Seiler, Sexty, Stamatescu 14

full QCD Sexty 13, Kogut & Sinclair 15-

Nagata, Nishimura, Shimasaki 15-, Bloch 16-
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Complex Langevin dynamics: Full QCD

implementation of hopping parameter expansion to

high order O(κ50) and comparison with full QCD

0 10 20 30 40 50
n, order of the expansion (including terms up to κn

)

0

0.02

0.04

0.06

de
ns

ity

full QCD
κ

s
 expansion

full QCD
κ

s
 expansion

µ=0.8

N
f
=2, κ=0.12

8
4
, β=5.9

µ=0.7

convergence of hopping expansion

agreement between expansion and full QCD
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Summary

theories with sign problem:

rich topic with diverse solutions

some theories solvable in more than one way

some not all (yet!)

into the complex plane:

complex action leads naturally to complexification

complex Langevin dynamics

Lefschetz thimbles/holomorphic flow

no fully satisfactory solution yet

lots of work to do!
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Where is Swansea?

in Wales, United Kingdom
about three hours from London by direct train
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Swansea University

university campus next to the beach
Dubna, August 2017 – p. 47



Swansea and the Gower peninsula

many beautiful beaches, and even occasional sunshine!
Dubna, August 2017 – p. 48
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