Derivation of the system of N-order Riccati equations

Robert M. Yamaleev Joint Institute for Nuclear Research, LIT, Dubna, Russia. Email: yamaleev@jinr.ru

July 5, 2017

1 Formulation of the problem

Evolution generated by the finite dimensional operator H:

$$\frac{d}{dt}\Psi(t) = H\Psi(t), \quad \Psi(0) = \Psi_0,$$

$$\Psi(t) = \exp(tH)\Psi_0.$$

The finite dimensional operator H obeys its characteristic polynomial equation

$$f(H) = 0.$$

Besides of the evolution equation generated by operator H, one may define an evolution equation governed by the n-order Riccati equation of the form

$$\frac{d}{dt}U = f(U).$$

Polynomial f(X) we present in the form

$$f(X) = X^n + \sum_{k=1}^n (-)^k a_k X^{n-k}, \ a_k \in C.$$

Let E be a *companion matrix* of the operator H. The companion matrix satisfies the same characteristic equation , so that,

$$f(E) = 0.$$

The aim is to transform a linear system of evolution equations generated by finite dimensional matrix to the system of Riccati equations.

$$\frac{d}{dt}\Psi(t) = H\Psi(t) \quad \Leftarrow \quad \Rightarrow \quad \frac{d}{dt}U = f(U).$$

General complex algebra

$$f(\mathbf{e}) = \mathbf{0}.$$

Elements of the general complex algebra GC_n are defined by the series

$$Z = \sum_{k=0}^{n-1} \mathbf{e}^k q_k, \quad \mathbf{e}^0 = I, \quad Z \in GC_n.$$

In a matrix representation the generator $\mathbf{e} \to E$, correspondingly, elements of the general complex algebra are presented by $n \times n$ matrix of the form

$$Z = \sum_{k=0}^{n-1} E^k q_k, \quad E^0 = I.$$

It is supposed that the *n*-order polynomial f(X) possesses with *n* distinct roots $x_k, k = 1, ..., n \in \mathcal{C}$. The *companion matrix* E of polynomial f(X):

$$E = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & (-1)^{n+1} a_n \\ 1 & 0 & 0 & 0 & 0 & (-1)^n a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & -a_2 \\ 0 & 0 & \dots & 0 & 1 & a_1 \end{pmatrix}.$$

Thus, $Z \in GC_n$ is (n-1) degree polynomial of the form

$$Q(U) = \sum_{k=0}^{n-1} U^k q_k, \ q_{n-1} \neq 0.$$

The modulus of $Z \in GC_n$ conventionally is defined by the determinant function

$$|Z|^n = Det(\sum_{k=0}^{n-1} E^k q_k).$$

Let $u_k, k = 1, 2, ..., n - 1$ be roots of the polynomial Q(U). Then the modulus of the GC_n -number admits another form of representation via the basic polynomial f(X):

$$|Z|^n = Det(\sum_{k=0}^{n-1} E^k q_k) = q_{n-1}^n \prod_{k=1}^{n-1} f(u_k).$$

Examples

$$f(X) = X^{2} - a_{1}X + a_{2}.$$

$$f(\mathbf{e}) = \mathbf{0}.$$

$$Z = q_{0} + \mathbf{e} \mathbf{q}_{1}.$$

$$E^{2} - a_{1}E + a_{2}I = 0.$$

$$Z = q_{0} + Eq_{1}, \quad Z = x + iy, \quad i^{2} + 1 = 0.$$

$$|Z|^{2} = q_{1}^{2}f(u), \quad u = -\frac{q_{0}}{q_{1}}$$

Companion matrix

$$E = \left(\begin{array}{cc} 1 & -a_2 \\ 0 & a_1 \end{array}\right)$$

The case N = 3. Companion matrix

$$E = \begin{pmatrix} 0 & 0 & a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & a_1 \end{pmatrix}, \quad E^2 = \begin{pmatrix} 0 & a_3 & a_3a - 1 \\ 0 & -a_2 & a_3 - a_1a_2 \\ 0 & a_1 & a_1^2 - a_2 \end{pmatrix}$$

$$f(X) = X^3 - a_1X^2 + a_2X + a_3$$

$$E^3 - a_1E^2 + a_2E - a_3I = 0.$$

$$Z = q_0 + Eq_1 + E^2q_2,$$

$$|Z|^3 = q_2^3 f(u_1)f(u_2), \quad q_2u^2 + q_1u + q_0 = 0.$$

$$|Z|^3 = Det(Z).$$

Trigonometry. Examples.

Evolution equations

the case N=2.

$$E^2 - a_1 E + a_2 = 0.$$

$$\exp(E\phi) = g_0(\phi, a_1, a_2) + x_1 \ g_1(\phi, a_1, a_2).$$

$$\frac{d}{d\phi} \left(\begin{array}{c} g_0 \\ g_1 \end{array} \right) = \left(\begin{array}{cc} 1 & -a_2 \\ 0 & a_1 \end{array} \right) \left(\begin{array}{c} g_0 \\ g_1 \end{array} \right).$$

the case N=3.

$$\exp(E\phi_{1} + E^{2}\phi_{2}) = g_{0}(\phi_{1}, \phi_{2}) + Eg_{1}(\phi_{1}, \phi_{2}) + E^{2}g_{2}(\phi_{1}, \phi_{2}).$$

$$\frac{\partial}{\partial \phi_{1}} \exp(E\phi_{1} + E^{2}\phi_{2}) = E \exp(E\phi_{1} + E^{2}\phi_{2}),$$

$$\frac{\partial}{\partial \phi_{2}} \exp(E\phi_{1} + E^{2}\phi_{2}) = E^{2} \exp(E\phi_{1} + E^{2}\phi_{2}).$$

$$\frac{\partial}{\partial \phi_{2}} \exp(E\phi_{1} + E^{2}\phi_{2}) = E^{2} \exp(E\phi_{1} + E^{2}\phi_{2}).$$

$$\frac{d}{d\phi_1} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & a_1 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}.$$

$$\frac{d}{d\phi_2} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 0 & a_3 & a_3a - 1 \\ 0 & -a_2 & a_3 - a_1a_2 \\ 0 & a_1 & a_1^2 - a_2 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}.$$

Trigonometry. The general case.

Euler formula for the exponential matrix is defined by the series

$$\exp(\sum_{k=1}^{n-1} E^k \phi_k) = g_0(\phi) + Eg_1(\phi) + E^2 g_2(\phi) + \dots + E^{n-1} g_{n-1}(\phi).$$

Here ϕ means the set of (n-1) parameters $\phi := (\phi_1, \phi_2, \phi_3, ... \phi_{n-1})$.

Define (n-1)-order polynomial

$$Q(U) = g_0(\phi) + Ug_1(\phi) + U^2g_2(\phi) + \dots + U^{n-1}g_{n-1}(\phi).$$

Evolution equation

$$\frac{\partial}{\partial \phi_k} \mathbf{v}^{\mathbf{g}}(\phi) = E^k \mathbf{v}^{\mathbf{g}}(\phi), \ \phi = (\phi_1, \phi_2, ..., \phi_{n-1}), \ k = 1, ..., n-1.$$

where $\mathbf{v}^{\mathbf{g}}(\phi)$ is a vector with components

$$\mathbf{v}^{\mathbf{g}} = [g_0, g_1, g_2, ..., g_{n-1}]^T.$$

Theorem.

The system of evolution equations are reduced to n-order Riccati equation of the form

$$\frac{d}{d\phi_{n-1}}U = f(U),$$

under the set of constraints

$$q_k(\phi) = 0, k = 2, 3, ..., n - 1,$$

the solution of the n-order Riccati equation is defined as a fraction of two trigonometric functions by

$$U(\phi_{n-1}) = -\frac{g_0(\phi_{n-1})}{g_1(\phi_{n-1})},$$

where ϕ_{n-1} depends of (n-2) other parameters $\phi_{n-1} = \phi_{n-1}(\phi_1, \phi_2, ..., \phi_{n-2})$, this dependence is implicitly defined by the constraints.

Thus, transformation of the linear system of evolution equations into canonical form of n-order Riccati equation requires (n-2) constraints. Under these constraints the (n-1) order derivative polynomial Q(U) is reduced into the linear function of the form

$$Q(U) = g_0 + Ug_1.$$

Then the solution of equation Q(U) = 0 it turns out to be the solution to n-order Riccati equation. This observation prompts us an idea to seek differential equations for the roots of the (n-1) order polynomial Q(U). In the result we expect to obtain a system of Riccati-type equations for functions

$$u_k = u_k(\phi), \ k = 1, 2, 3, ..., n - 1, \ \phi = (\phi_1, \phi_2, ..., \phi_{n-1}),$$

where u_k are roots of the polynomial $Q(u_k)$:

$$Q(U) = 0 \rightarrow g_0(\phi) + Ug_1(\phi) + U^2g_2(\phi) + \dots + U^{n-1}g_{n-1}(\phi) = 0.$$

2 Theorem

The system of generalized Riccati equations.

Denote by $u_k(\phi)$, k = 1, 2, 3, ..., n - 1; $\phi = (\phi_1, \phi_2, ..., \phi_{n-1})$, the set of roots of the polynomial

$$Q(U) = \sum_{j=0}^{n-1} U^{j} g_{j}(\phi),$$

where coefficients $g_j(\phi)$, j = 0, 1, 2, ..., n-1 are solutions of the linear system of evolution equations:

$$\partial_i g_j = \sum_{m=1}^n (H^i)_j^m g_{m-1}, \ i = 1, ..., n-1.$$

Theorem

The functions $u_k(\phi)$, k = 1, ..., n-1 obey the following system of nonlinear equations

$$F(u_m) \sum_{k=1}^{n-p} a_{n-k-p} \partial_k u_m = A_p f(u_m), \quad m = 1, ..., n-1.$$

where $F(u_m)$ is (n-2)-degree truncated polynomial of the form

$$F(u_m) = \frac{dQ(U)}{dU}|_{U=u_m} = u_m^{n-2} + \sum_{k=0}^{n-3} u_m^k A_k(m) = \prod_{k=1, k \neq m}^{n-1} (u_m - u_k),$$

and $A_p(m)$ is p-th coefficient of the polynomial $F(u_m)$. **Proof**.

Example, N = 6.

Let us illustrate the method by taking in a quality of a basic polynomial the six-order polynomial of the form

$$f(X) = X^6 - a_1 X^5 + a_2 X^4 - a_3 X^3 + a_4 X^2 - a_5 X + a_6.$$

Then, the derived polynomial has the form

$$Q(U) = g_5 U^5 + g_4 U^4 + g_3 U^3 + g_2 U^2 + g_1 U + g_0.$$

Let U be one of the roots of the polynomial Q(U). Then, according to Riccatitype equations the function U obeys the following system of equations

$$F(U) \partial_k U = \sum_{j=1}^5 M_{kj} A_j f(U), k = 1, 2, 3, 4, 5;$$

where the explicit form of the matrix M_{ij} is

$$M_{kj} = \begin{pmatrix} 1 & a_1 & -a_2 + a_1^2 & a_3 - 2a_1a_2 + a_1^3 & -a_4 + 2a_1a_3 - 3a_1^2a_2 + a_2^2 + a_1^4 \\ 0 & 1 & a_1 & -a_2 + a_1^2 & a_3 - 2a_1a_2 + a_1^3 \\ 0 & 0 & 1 & a_1 & -a_2 + a_1^2 \\ 0 & 0 & 0 & 1 & a_1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The polynomial F(U) has the form

$$F(U) = (U - V)(U - W)(U - Y)(U - Z) = A_1U^4 + A_2U^3 + A_3U^2 + A_4U + A_5,$$

where coefficients A_p , p = 1, 2, 3, 4, 5 are defined by Vieta's formulae

$$A_1 = 1, -A_2 = V + W + Y + Z, A_3 = VW + VY + VZ + WY + WZ + YZ,$$

$$-A_4 = WVY + WVZ + WYZ + VYZ, A_5 = WVYZ,$$

and V, W, Y, Z are the other roots of Q(U). By using the inverse matrix

$$M_{ij}^{-1} = \begin{pmatrix} 1 & -a_1 & a_2 & -a_3 & a_4 \\ 0 & 1 & -a_1 & a_2 & -a_3 \\ 0 & 0 & 1 & -a_1 & a_2 \\ 0 & 0 & 0 & 1 & -a_1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

these equations are transformed to the following Riccati-type equations

$$F(U) (\partial_{5} - a_{1}\partial_{4} + a_{2}\partial_{3} - a_{3}\partial_{2} + a_{4}\partial_{1})U = A_{5} f(U),$$

$$F(U) (\partial_{4} - a_{1}\partial_{3} + a_{2}\partial_{2} - a_{3}\partial_{1})U = A_{4} f(U),$$

$$F(U) (\partial_{3} - a_{1}\partial_{2} + a_{2}\partial_{1})U = A_{3} f(U),$$

$$F(U)(\partial_{2} - a_{1}\partial_{1})U = A_{2} f(U),$$

$$F(U)\partial_{1}U = A_{1} f(U).$$

Now, we collect these equations into unique equation for function U:

The matrix equation can be written of the following forms either

$$(U^{4}\partial_{1} + U^{3}(\partial_{2} - a_{1}\partial_{1}) + U^{2}(\partial_{3} - a_{1}\partial_{2} + a_{2}\partial_{1})$$

$$+U(\partial_{4} - a_{1}\partial_{3} + a_{2}\partial_{2} - a_{3}\partial_{1})$$

$$+(\partial_{5} - a_{1}\partial_{4} + a_{2}\partial_{3} - a_{3}\partial_{2} + a_{4}\partial_{1})) U = f(U);$$
or,
$$(U^{4} - a_{1}U^{3} + a_{2}U^{2} - a_{3}U + a_{4})\partial_{1} +$$

$$+(U^{3} - a_{1}U^{2} + a_{2}U - a_{3})\partial_{2} +$$

$$+(U^{2} - a_{1}U + a_{2})\partial_{3} +$$

$$+(U - a_{1})\partial_{4} + \partial_{5}) U = f(U).$$

Inverse system of generalized Riccati equations.

The *n*-order Riccati equation

$$\frac{dU}{d\phi} = f(U),$$

with constant coefficient directly is integrated with respect to inverse function $\phi = \phi(U)$ by

$$d\phi = \frac{dU}{f(U)}.$$

Thus, in order to integrate the Riccati equation one has to revert this equation. The system of *n*-order Riccati equations also admit an inverse system of equations where the set of variables $\psi_k, k = 1, 2, 3, ..., n - 1$ are functions of the roots $u_k, k = 1, 2, 3, ..., n - 1$. The differential of u_i is

$$du_i = \sum_{k=1}^{n-1} \frac{\partial u_i}{\partial \psi_k} d\psi_k, \ i = 1, 2, ..., n-1.$$

In general case the elements of Jacobian matrix are defined as follows

$$J(\frac{Du}{D\psi}) = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n-1} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n-1} \\ \dots & \dots & \dots & \dots \\ A_{n-1,1} & A_{n-1,2} & \dots & A_{n-1,3} \end{pmatrix} \begin{pmatrix} 1 & a_1 & \dots & M_{1,n-1} \\ 0 & 1 & a_1 \dots & M_{2,n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_1 \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Now let us define the inverse Jacobian matrix

$$J^{-1}(\frac{Du}{D\psi}) = J(\frac{D\psi}{Du}) = \begin{pmatrix} \partial_{u_1}\phi_1 & \partial_{u_2}\phi_1 & \dots & \partial_{u_{n-1}}\phi_1 \\ \dots & \dots & \dots & \dots \\ \partial_{u_1}\phi_{n-2} & \partial_{u_2}\phi_{n-2} & \dots & \partial_{u_{n-1}}\phi_{n-2} \\ \partial_{u_1}\phi_{n-1} & \partial_{u_2}\phi_{n-1} & \dots & \partial_{u_{n-1}}\phi_{n-1} \end{pmatrix}.$$

The inverse Jacobian matrix as a product of two matrices:

$$J(\frac{D\psi}{Du}) = \begin{pmatrix} 1 & -a_1 & \dots & a_{n-2}(-1)^n \\ 0 & 1 & \dots & a_{n-3}(-1)^{n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -a_1 \\ 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} u_1^{n-2} & u_2^{n-2} & \dots & u_{n-1}^{n-2} \\ u_1^{n-1} & u_2^{n-1} & \dots & u_{n-1}^{n-1} \\ \dots & \dots & \dots & \dots \\ u_1 & u_2 & \dots & u_{n-1} \\ 1 & 1 & \dots & 1 \end{pmatrix} = \frac{\partial}{\partial u_i} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_{n-2} \\ \phi_{n-1} \end{pmatrix}$$

Example, N = 6.

The inverse system of equations are given by

$$\frac{\partial \phi_1}{\partial u_i} = \frac{1}{f(u_i)} (u_i^4 - a_1 u_i^3 + a_2 u_i^2 - a_3 u_i + a_4),$$

$$\frac{\partial \phi_2}{\partial u_i} = \frac{1}{f(u_i)} (u_i^3 - a_1 u_i^2 + a_2 u_i + a_3),$$

$$\frac{\partial \phi_3}{\partial u_i} = \frac{1}{f(u_i)} (u_i^2 - a_1 u_i + a_2),$$

$$\frac{\partial \phi_4}{\partial u_i} = \frac{1}{f(u_i)} (u_i - a_1),$$

$$\frac{\partial \phi_5}{\partial u_i} = \frac{1}{f(u_i)},$$

where $u_1 = U$, $u_2 = V$, $u_3 = W$, $u_4 = Y$, $u_5 = Z$. These equations can be cast into the following matrix form

$$\frac{\partial}{\partial u_i} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \end{pmatrix} = \frac{1}{f(u_i)} \begin{pmatrix} 1 & -a_1 & a_2 & -a_3 & a_4 \\ 0 & 1 & -a_1 & a_2 & -a_3 \\ 0 & 0 & 1 & -a_1 & a_2 \\ 0 & 0 & 0 & 1 & -a_1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_i^4 \\ u_i^3 \\ u_i^2 \\ u_i \\ 1 \end{pmatrix}.$$

Applications

1. Riccati and relativistic mechanics.

$$f(X) = X^2 - 2p_0X + p^2$$
, $x_1 = p_0 + mc$, $x_2 = p_0 - mc$.

$$\frac{du}{d\phi} = f(u).$$

$$u(\phi, \phi_0) = p_0(\phi_0) - p_0(\phi).$$

2. Riccati and cross-ratio

$$\exp(mc\phi) = \frac{p_0 + mc}{p_0 - mc} = \frac{x_1}{x_2}$$
$$\exp(mc(\phi_1 - \phi_2)) = \frac{p_0 + mc - u_1}{p_0 - mc - u_1} \frac{p_0 - mc - u_2}{p_0 + mc - u_2} = \frac{x_1 - u_1}{x_2 - u_1} \frac{x_2 - u_2}{x_1 - u_2}.$$

3. Riccati and hyperbolic and elliptic geometries.

Geodesic line — circle with R=mc. End points of geodesic line $x_1=p_0+mc,\ x_2=p_0-mc$.

4. N=3 case.

$$f(X) = X^{3} - a_{1}X^{2} + a_{2}X - a_{3}, \quad x_{1}, x_{2}, x_{3}.$$

$$\exp(V\phi) = (u - x_{1})^{m_{32}}(u - x_{2})^{m_{13}}(u - x_{3})^{m_{2}1}$$

$$\frac{du}{d\phi} = u^{3} - a_{1}u^{2} + a_{2}u - a_{3}.$$

$$N = 3.$$

$$(U - V)\partial_{1}U = f(U)$$

$$(U - V)\partial_{2}U = (a_{1} - V) f(U)$$

$$N = 4.$$

$$(U - V)(U - W)\partial_{1}U = f(U)$$

$$(U - V)(U - W)\partial_{2}U = (a_{1} - V - W) f(U)$$

Inverse system of equations.

 $(U - V)(U - W)\partial_3 U = ((a_1^2 - a_2) - a_1(V + W) + VW)f(U)$

$$\frac{\partial \phi_1}{\partial u} = \frac{1}{f(u)} (u^2 - a_1 u + a_2),$$

$$\frac{\partial \phi_2}{\partial u_i} = \frac{1}{f(u)} (u - a_1),$$

$$\frac{\partial \phi_3}{\partial u} = \frac{1}{f(u)}.$$

References

- [1] R.M.Yamaleev, Geometrical and physical interpretation of evolution governed by general complex algebra. *J.Math. Anal. Appl.* **340(1)** (2008),p.1046-1057.
- [2] R.M.Yamaleev, Representation of solutions of n-order Riccati equation via generalized trigonometric functions. *J.Math. Anal. Appl.* **420(1)** 12 (2014),p.334-347. http://dx.doi.org/10.1016/j.jmaa.2014.05.066
- [3] R.M.Yamaleev, Multicomplex algebras on polynomials and generalized Hamilton dynamics. *J.Math.Anal. Appl.* **322** (2006) 815-824.
- [4] R.M.Yamaleev, Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. *J. Adv. Appl. Clifford Al.* **15** No.2 (2005) 123-150.
- [5] R.M.Yamaleev, Solutions of Riccati-Abel equation in terms of characteristics of general complex algebra. *Communications of Joint Institute for Nuclear Research* **E5-2012-129** (2012) 1-16.
- [6] R.M.Yamaleev, Transformation of linear system of differential equations to the system of generalized Riccati equations. *Europian J. of Mathematics* **10(4)** (2017),p.139-160.