Derivation of the system of N -order Riccati equations

Robert M. Yamaleev
Joint Institute for Nuclear Research, LIT, Dubna, Russia.
Email: yamaleev@jinr.ru

July 5, 2017

1 Formulation of the problem

Evolution generated by the finite dimensional operator H :

$$
\begin{gathered}
\frac{d}{d t} \Psi(t)=H \Psi(t), \quad \Psi(0)=\Psi_{0} \\
\Psi(t)=\exp (t H) \Psi_{0}
\end{gathered}
$$

The finite dimensional operator H obeys its characteristic polynomial equation

$$
f(H)=0 .
$$

Besides of the evolution equation generated by operator H, one may define an evolution equation governed by the n-order Riccati equation of the form

$$
\frac{d}{d t} U=f(U)
$$

Polynomial $f(X)$ we present in the form

$$
f(X)=X^{n}+\sum_{k=1}^{n}(-)^{k} a_{k} X^{n-k}, \quad a_{k} \in C .
$$

Let E be a companion matrix of the operator H. The companion matrix satisfies the same characteristic equation, so that,

$$
f(E)=0
$$

The aim is to transform a linear system of evolution equations generated by finite dimensional matrix to the system of Riccati equations.

$$
\frac{d}{d t} \Psi(t)=H \Psi(t) \quad \Leftarrow \quad \Rightarrow \quad \frac{d}{d t} U=f(U)
$$

General complex algebra

$$
f(\mathbf{e})=\mathbf{0}
$$

Elements of the general complex algebra $G C_{n}$ are defined by the series

$$
Z=\sum_{k=0}^{n-1} \mathbf{e}^{k} q_{k}, \quad \mathbf{e}^{0}=I, \quad Z \in G C_{n}
$$

In a matrix representation the generator $\mathbf{e} \rightarrow E$, correspondingly, elements of the general complex algebra are presented by $n \times n$ matrix of the form

$$
Z=\sum_{k=0}^{n-1} E^{k} q_{k}, \quad E^{0}=I
$$

It is supposed that the n-order polynomial $f(X)$ possesses with n distinct roots $x_{k}, k=1, \ldots, n \in \mathcal{C}$. The companion matrix E of polynomial $f(X)$:

$$
E=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & (-1)^{n+1} a_{n} \\
1 & 0 & 0 & 0 & 0 & (-1)^{n} a_{n-1} \\
. & . & \ldots & . & . & . \\
0 & 0 & \ldots & 1 & 0 & -a_{2} \\
0 & 0 & \ldots & 0 & 1 & a_{1}
\end{array}\right)
$$

Thus, $Z \in G C_{n}$ is $(n-1)$ degree polynomial of the form

$$
Q(U)=\sum_{k=0}^{n-1} U^{k} q_{k}, \quad q_{n-1} \neq 0
$$

The modulus of $Z \in G C_{n}$ conventionally is defined by the determinant function

$$
|Z|^{n}=\operatorname{Det}\left(\sum_{k=0}^{n-1} E^{k} q_{k}\right) .
$$

Let $u_{k}, k=1,2, \ldots, n-1$ be roots of the polynomial $Q(U)$. Then the modulus of the $G C_{n}$-number admits another form of representation via the basic polynomial $f(X)$:

$$
|Z|^{n}=\operatorname{Det}\left(\sum_{k=0}^{n-1} E^{k} q_{k}\right)=q_{n-1}^{n} \prod_{k=1}^{n-1} f\left(u_{k}\right)
$$

Examples

$$
\begin{gathered}
f(X)=X^{2}-a_{1} X+a_{2} . \\
f(\mathbf{e})=\mathbf{0} . \\
Z=q_{0}+\mathbf{e} \mathbf{q}_{1} . \\
E^{2}-a_{1} E+a_{2} I=0 . \\
Z=q_{0}+E q_{1}, \quad Z=x+i y, \quad i^{2}+1=0 . \\
|Z|^{2}=q_{1}^{2} f(u), \quad u=-\frac{q_{0}}{q_{1}}
\end{gathered}
$$

Companion matrix

$$
E=\left(\begin{array}{cc}
1 & -a_{2} \\
0 & a_{1}
\end{array}\right)
$$

The case $N=3$.
Companion matrix

$$
\begin{gathered}
E=\left(\begin{array}{ccc}
0 & 0 & a_{3} \\
1 & 0 & -a_{2} \\
0 & 1 & a_{1}
\end{array}\right), \quad E^{2}=\left(\begin{array}{ccc}
0 & a_{3} & a_{3} a-1 \\
0 & -a_{2} & a_{3}-a_{1} a_{2} \\
0 & a_{1} & a_{1}^{2}-a_{2}
\end{array}\right) \\
f(X)=X^{3}-a_{1} X^{2}+a_{2} X+a_{3} \\
E^{3}-a_{1} E^{2}+a_{2} E-a_{3} I=0 . \\
Z=q_{0}+E q_{1}+E^{2} q_{2} \\
|Z|^{3}=q_{2}^{3} f\left(u_{1}\right) f\left(u_{2}\right), \quad q_{2} u^{2}+q_{1} u+q_{0}=0 \\
|Z|^{3}=\operatorname{Det}(Z)
\end{gathered}
$$

Trigonometry. Examples.

Evolution equations

the case $N=2$

$$
\begin{gathered}
E^{2}-a_{1} E+a_{2}=0 \\
\exp (E \phi)=g_{0}\left(\phi, a_{1}, a_{2}\right)+x_{1} g_{1}\left(\phi, a_{1}, a_{2}\right) \\
\frac{d}{d \phi}\binom{g_{0}}{g_{1}}=\left(\begin{array}{cc}
1 & -a_{2} \\
0 & a_{1}
\end{array}\right)\binom{g_{0}}{g_{1}}
\end{gathered}
$$

the case $N=3$.

$$
\begin{gathered}
\exp \left(E \phi_{1}+E^{2} \phi_{2}\right)=g_{0}\left(\phi_{1}, \phi_{2}\right)+E g_{1}\left(\phi_{1}, \phi_{2}\right)+E^{2} g_{2}\left(\phi_{1}, \phi_{2}\right) \\
\frac{\partial}{\partial \phi_{1}} \exp \left(E \phi_{1}+E^{2} \phi_{2}\right)=E \exp \left(E \phi_{1}+E^{2} \phi_{2}\right) \\
\frac{\partial}{\partial \phi_{2}} \exp \left(E \phi_{1}+E^{2} \phi_{2}\right)=E^{2} \exp \left(E \phi_{1}+E^{2} \phi_{2}\right) \\
\frac{d}{d \phi_{1}}\left(\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & a_{3} \\
1 & 0 & -a_{2} \\
0 & 1 & a_{1}
\end{array}\right)\left(\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2}
\end{array}\right) \\
\frac{d}{d \phi_{2}}\left(\begin{array}{c}
g_{0} \\
g_{1} \\
g_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{3} & a_{3} a-1 \\
0 & -a_{2} & a_{3}-a_{1} a_{2} \\
0 & a_{1} & a_{1}^{2}-a_{2}
\end{array}\right)\left(\begin{array}{l}
g_{0} \\
g_{1} \\
g_{2}
\end{array}\right)
\end{gathered}
$$

Trigonometry. The general case.

Euler formula for the exponential matrix is defined by the series

$$
\exp \left(\sum_{k=1}^{n-1} E^{k} \phi_{k}\right)=g_{0}(\phi)+E g_{1}(\phi)+E^{2} g_{2}(\phi)+\ldots+E^{n-1} g_{n-1}(\phi) .
$$

Here ϕ means the set of $(n-1)$ parameters $\phi:=\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots \phi_{n-1}\right)$.
Define ($n-1$)-order polynomial

$$
Q(U)=g_{0}(\phi)+U g_{1}(\phi)+U^{2} g_{2}(\phi)+\ldots+U^{n-1} g_{n-1}(\phi) .
$$

Evolution equation

$$
\frac{\partial}{\partial \phi_{k}} \mathbf{v}^{\mathbf{g}}(\phi)=E^{k} \mathbf{v}^{\mathbf{g}}(\phi), \phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n-1}\right), k=1, \ldots, n-1 .
$$

where $\mathbf{v}^{\mathbf{g}}(\phi)$ is a vector with components

$$
\mathbf{v}^{\mathbf{g}}=\left[g_{0}, g_{1}, g_{2}, \ldots, g_{n-1}\right]^{T} .
$$

Theorem.

The system of evolution equations are reduced to n-order Riccati equation of the form

$$
\frac{d}{d \phi_{n-1}} U=f(U),
$$

under the set of constraints

$$
g_{k}(\phi)=0, k=2,3, \ldots, n-1,
$$

the solution of the n-order Riccati equation is defined as a fraction of two trigonometric functions by

$$
U\left(\phi_{n-1}\right)=-\frac{g_{0}\left(\phi_{n-1}\right)}{g_{1}\left(\phi_{n-1}\right)},
$$

where ϕ_{n-1} depends of $(n-2)$ other parameters $\phi_{n-1}=\phi_{n-1}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n-2}\right)$, this dependence is implicitly defined by the constraints.

Thus, transformation of the linear system of evolution equations into canonical form of n-order Riccati equation requires $(n-2)$ constraints. Under these constraints the $(n-1)$ order derivative polynomial $Q(U)$ is reduced into the linear function of the form

$$
Q(U)=g_{0}+U g_{1} .
$$

Then the solution of equation $Q(U)=0$ it turns out to be the solution to n-order Riccati equation. This observation prompts us an idea to seek differential equations for the roots of the $(n-1)$ order polynomial $Q(U)$. In the result we expect to obtain a system of Riccati-type equations for functions

$$
u_{k}=u_{k}(\phi), k=1,2,3, \ldots, n-1, \phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n-1}\right)
$$

where u_{k} are roots of the polynomial $Q\left(u_{k}\right)$:

$$
Q(U)=0 \quad \rightarrow \quad g_{0}(\phi)+U g_{1}(\phi)+U^{2} g_{2}(\phi)+\ldots+U^{n-1} g_{n-1}(\phi)=0
$$

2 Theorem

The system of generalized Riccati equations.

Denote by $u_{k}(\phi), k=1,2,3, \ldots, n-1 ; \phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n-1}\right)$, the set of roots of the polynomial

$$
Q(U)=\sum_{j=0}^{n-1} U^{j} g_{j}(\phi)
$$

where coefficients $g_{j}(\phi), j=0,1,2, \ldots, n-1$ are solutions of the linear system of evolution equations:

$$
\partial_{i} g_{j}=\sum_{m=1}^{n}\left(H^{i}\right)_{j}^{m} g_{m-1}, i=1, \ldots, n-1
$$

Theorem

The functions $u_{k}(\phi), k=1, \ldots, n-1$ obey the following system of nonlinear equations

$$
F\left(u_{m}\right) \sum_{k=1}^{n-p} a_{n-k-p} \partial_{k} u_{m}=A_{p} f\left(u_{m}\right), \quad m=1, \ldots, n-1 .
$$

where $F\left(u_{m}\right)$ is $(n-2)$-degree truncated polynomial of the form

$$
F\left(u_{m}\right)=\left.\frac{d Q(U)}{d U}\right|_{U=u_{m}}=u_{m}^{n-2}+\sum_{k=0}^{n-3} u_{m}^{k} A_{k}(m)=\prod_{k=1, k \neq m}^{n-1}\left(u_{m}-u_{k}\right),
$$

and $A_{p}(m)$ is p-th coefficient of the polynomial $F\left(u_{m}\right)$.
Proof.

Example, $N=6$.

Let us illustrate the method by taking in a quality of a basic polynomial the six-order polynomial of the form

$$
f(X)=X^{6}-a_{1} X^{5}+a_{2} X^{4}-a_{3} X^{3}+a_{4} X^{2}-a_{5} X+a_{6}
$$

Then, the derived polynomial has the form

$$
Q(U)=g_{5} U^{5}+g_{4} U^{4}+g_{3} U^{3}+g_{2} U^{2}+g_{1} U+g_{0}
$$

Let U be one of the roots of the polynomial $Q(U)$. Then, according to Riccatitype equations the function U obeys the following system of equations

$$
F(U) \partial_{k} U=\sum_{j=1}^{5} M_{k j} A_{j} f(U), k=1,2,3,4,5
$$

where the explicit form of the matrix $M_{i j}$ is
$M_{k j}=\left(\begin{array}{ccccc}1 & a_{1} & -a_{2}+a_{1}^{2} & a_{3}-2 a_{1} a_{2}+a_{1}^{3} & -a_{4}+2 a_{1} a_{3}-3 a_{1}^{2} a_{2}+a_{2}^{2}+a_{1}^{4} \\ 0 & 1 & a_{1} & -a_{2}+a_{1}^{2} & a_{3}-2 a_{1} a_{2}+a_{1}^{3} \\ 0 & 0 & 1 & a_{1} & -a_{2}+a_{1}^{2} \\ 0 & 0 & 0 & 1 & a_{1} \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$.
The polynomial $F(U)$ has the form
$F(U)=(U-V)(U-W)(U-Y)(U-Z)=A_{1} U^{4}+A_{2} U^{3}+A_{3} U^{2}+A_{4} U+A_{5}$,
where coefficients $A_{p}, p=1,2,3,4,5$ are defined by Vieta's formulae

$$
\begin{aligned}
A_{1}=1, & -A_{2}=V+W+Y+Z, A_{3}=V W+V Y+V Z+W Y+W Z+Y Z \\
& -A_{4}=W V Y+W V Z+W Y Z+V Y Z, A_{5}=W V Y Z
\end{aligned}
$$

and V, W, Y, Z are the other roots of $Q(U)$. By using the inverse matrix

$$
M_{i j}^{-1}=\left(\begin{array}{ccccc}
1 & -a_{1} & a_{2} & -a_{3} & a_{4} \\
0 & 1 & -a_{1} & a_{2} & -a_{3} \\
0 & 0 & 1 & -a_{1} & a_{2} \\
0 & 0 & 0 & 1 & -a_{1} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \text {, }
$$

these equations are transformed to the following Riccati-type equations

$$
\begin{gathered}
F(U)\left(\partial_{5}-a_{1} \partial_{4}+a_{2} \partial_{3}-a_{3} \partial_{2}+a_{4} \partial_{1}\right) U=A_{5} f(U), \\
F(U)\left(\partial_{4}-a_{1} \partial_{3}+a_{2} \partial_{2}-a_{3} \partial_{1}\right) U=A_{4} f(U), \\
F(U)\left(\partial_{3}-a_{1} \partial_{2}+a_{2} \partial_{1}\right) U=A_{3} f(U), \\
F(U)\left(\partial_{2}-a_{1} \partial_{1}\right) U=A_{2} f(U), \\
F(U) \partial_{1} U=A_{1} f(U) .
\end{gathered}
$$

Now, we collect these equations into unique equation for function U :

$$
\left(\begin{array}{lllll}
1 & U & U^{2} & U^{3} & U^{4}
\end{array}\right)\left(\begin{array}{ccccc}
1 & -a_{1} & a_{2} & -a_{3} & a_{4} \\
0 & 1 & -a_{1} & a_{2} & -a_{3} \\
0 & 0 & 1 & -a_{1} & a_{2} \\
0 & 0 & 0 & 1 & -a_{1} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\partial_{5} \\
\partial_{4} \\
\partial_{3} \\
\partial_{2} \\
\partial_{1}
\end{array}\right) U=f(U) .
$$

The matrix equation can be written of the following forms either

$$
\begin{gathered}
\left(U^{4} \partial_{1}+U^{3}\left(\partial_{2}-a_{1} \partial_{1}\right)+U^{2}\left(\partial_{3}-a_{1} \partial_{2}+a_{2} \partial_{1}\right)\right. \\
+U\left(\partial_{4}-a_{1} \partial_{3}+a_{2} \partial_{2}-a_{3} \partial_{1}\right) \\
\left.+\left(\partial_{5}-a_{1} \partial_{4}+a_{2} \partial_{3}-a_{3} \partial_{2}+a_{4} \partial_{1}\right)\right) U=f(U)
\end{gathered}
$$

or,

$$
\begin{gathered}
\left(\left(U^{4}-a_{1} U^{3}+a_{2} U^{2}-a_{3} U+a_{4}\right) \partial_{1}+\right. \\
+\left(U^{3}-a_{1} U^{2}+a_{2} U-a_{3}\right) \partial_{2}+ \\
\quad+\left(U^{2}-a_{1} U+a_{2}\right) \partial_{3}+ \\
\left.+\left(U-a_{1}\right) \partial_{4}+\partial_{5}\right) U=f(U) .
\end{gathered}
$$

Inverse system of generalized Riccati equations.

The n-order Riccati equation

$$
\frac{d U}{d \phi}=f(U)
$$

with constant coefficient directly is integrated with respect to inverse function $\phi=\phi(U)$ by

$$
d \phi=\frac{d U}{f(U)} .
$$

Thus, in order to integrate the Riccati equation one has to revert this equation. The system of n-order Riccati equations also admit an inverse system of equations where the set of variables $\psi_{k}, k=1,2,3, \ldots, n-1$ are functions of the roots $u_{k}, k=1,2,3, \ldots, n-1$. The differential of u_{i} is

$$
d u_{i}=\sum_{k=1}^{n-1} \frac{\partial u_{i}}{\partial \psi_{k}} d \psi_{k}, i=1,2, \ldots, n-1 .
$$

In general case the elements of Jacobian matrix are defined as follows

$$
J\left(\frac{D u}{D \psi}\right)=\left(\begin{array}{cccc}
A_{1,1} & A_{1,2} & \ldots & A_{1, n-1} \\
A_{2,1} & A_{2,2} & \ldots & A_{2, n-1} \\
\ldots & \ldots & \ldots & \ldots \\
A_{n-1,1} & A_{n-1,2} & \ldots & A_{n-1,3}
\end{array}\right)\left(\begin{array}{cccc}
1 & a_{1} & \ldots & M_{1, n-1} \\
0 & 1 & a_{1} \ldots & M_{2, n-1} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & a_{1} \\
0 & 0 & \ldots & 1
\end{array}\right) .
$$

Now let us define the inverse Jacobian matrix

$$
J^{-1}\left(\frac{D u}{D \psi}\right)=J\left(\frac{D \psi}{D u}\right)=\left(\begin{array}{cccc}
\partial_{u_{1}} \phi_{1} & \partial_{u_{2}} \phi_{1} & \ldots & \partial_{u_{n-1}} \phi_{1} \\
\ldots & \ldots & \ldots & \ldots \\
\partial_{u_{1}} \phi_{n-2} & \partial_{u_{2}} \phi_{n-2} & \ldots & \partial_{u_{n-1}} \phi_{n-2} \\
\partial_{u_{1}} \phi_{n-1} & \partial_{u_{2}} \phi_{n-1} & \ldots & \partial_{u_{n-1}} \phi_{n-1}
\end{array}\right) .
$$

The inverse Jacobian matrix as a product of two matrices:
$J\left(\frac{D \psi}{D u}\right)=\left(\begin{array}{cccc}1 & -a_{1} & \ldots & a_{n-2}(-1)^{n} \\ 0 & 1 & \ldots & a_{n-3}(-1)^{n-1} \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & -a_{1} \\ 0 & 0 & \ldots & 1\end{array}\right)\left(\begin{array}{cccc}u_{1}^{n-2} & u_{2}^{n-2} & \ldots & u_{n-1}^{n-2} \\ u_{1}^{n-1} & u_{2}^{n-1} & \ldots & u_{n-1}^{n-1} \\ \ldots & \ldots & \ldots & \ldots \\ u_{1} & u_{2} & \ldots & u_{n-1} \\ 1 & 1 & \ldots & 1\end{array}\right)=\frac{\partial}{\partial u_{i}}\left(\begin{array}{c}\phi_{1} \\ \phi_{2} \\ \ldots \\ \phi_{n-2} \\ \phi_{n-1}\end{array}\right)$

Example, $N=6$.
The inverse system of equations are given by

$$
\begin{gathered}
\frac{\partial \phi_{1}}{\partial u_{i}}=\frac{1}{f\left(u_{i}\right)}\left(u_{i}^{4}-a_{1} u_{i}^{3}+a_{2} u_{i}^{2}-a_{3} u_{i}+a_{4}\right), \\
\frac{\partial \phi_{2}}{\partial u_{i}}=\frac{1}{f\left(u_{i}\right)}\left(u_{i}^{3}-a_{1} u_{i}^{2}+a_{2} u_{i}+a_{3}\right) \\
\frac{\partial \phi_{3}}{\partial u_{i}}=\frac{1}{f\left(u_{i}\right)}\left(u_{i}^{2}-a_{1} u_{i}+a_{2}\right) \\
\frac{\partial \phi_{4}}{\partial u_{i}}=\frac{1}{f\left(u_{i}\right)}\left(u_{i}-a_{1}\right) \\
\frac{\partial \phi_{5}}{\partial u_{i}}=\frac{1}{f\left(u_{i}\right)}
\end{gathered}
$$

where $u_{1}=U, u_{2}=V, u_{3}=W, u_{4}=Y, u_{5}=Z$. These equations can be cast into the following matrix form

$$
\frac{\partial}{\partial u_{i}}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}
\end{array}\right)=\frac{1}{f\left(u_{i}\right)}\left(\begin{array}{ccccc}
1 & -a_{1} & a_{2} & -a_{3} & a_{4} \\
0 & 1 & -a_{1} & a_{2} & -a_{3} \\
0 & 0 & 1 & -a_{1} & a_{2} \\
0 & 0 & 0 & 1 & -a_{1} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
u_{i}^{4} \\
u_{i}^{3} \\
u_{i}^{2} \\
u_{i} \\
1
\end{array}\right) .
$$

Applications

1. Riccati and relativistic mechanics.

$$
\begin{gathered}
f(X)=X^{2}-2 p_{0} X+p^{2}, \quad x_{1}=p_{0}+m c, x_{2}=p_{0}-m c . \\
\frac{d u}{d \phi}=f(u) . \\
u\left(\phi, \phi_{0}\right)=p_{0}\left(\phi_{0}\right)-p_{0}(\phi) .
\end{gathered}
$$

2. Riccati and cross-ratio.

$$
\begin{gathered}
\exp (m c \phi)=\frac{p_{0}+m c}{p_{0}-m c}=\frac{x_{1}}{x_{2}} \\
\exp \left(m c\left(\phi_{1}-\phi_{2}\right)\right)=\frac{p_{0}+m c-u_{1}}{p_{0}-m c-u_{1}} \frac{p_{0}-m c-u_{2}}{p_{0}+m c-u_{2}}=\frac{x_{1}-u_{1}}{x_{2}-u_{1}} \frac{x_{2}-u_{2}}{x_{1}-u_{2}} .
\end{gathered}
$$

3. Riccati and hyperbolic and elliptic geometries.

Geodesic line - circle with $R=m c$. End points of geodesic line $x_{1}=$ $p_{0}+m c, \quad x_{2}=p_{0}-m c$.
4. $N=3$ case.

$$
\begin{gathered}
f(X)=X^{3}-a_{1} X^{2}+a_{2} X-a_{3}, \quad x_{1}, x_{2}, x_{3} . \\
\exp (V \phi)=\left(u-x_{1}\right)^{m_{32}}\left(u-x_{2}\right)^{m_{13}}\left(u-x_{3}\right)^{m_{2} 1} \\
\frac{d u}{d \phi}=u^{3}-a_{1} u^{2}+a_{2} u-a_{3} .
\end{gathered}
$$

$N=3$.

$$
\begin{gathered}
(U-V) \partial_{1} U=f(U) \\
(U-V) \partial_{2} U=\left(a_{1}-V\right) f(U)
\end{gathered}
$$

$N=4$.

$$
\begin{gathered}
(U-V)(U-W) \partial_{1} U=f(U) \\
(U-V)(U-W) \partial_{2} U=\left(a_{1}-V-W\right) f(U) \\
(U-V)(U-W) \partial_{3} U=\left(\left(a_{1}^{2}-a_{2}\right)-a_{1}(V+W)+V W\right) f(U)
\end{gathered}
$$

Inverse system of equations.

$$
\begin{gathered}
\frac{\partial \phi_{1}}{\partial u}=\frac{1}{f(u)}\left(u^{2}-a_{1} u+a_{2}\right), \\
\frac{\partial \phi_{2}}{\partial u_{i}}=\frac{1}{f(u)}\left(u-a_{1}\right), \\
\frac{\partial \phi_{3}}{\partial u}=\frac{1}{f(u)} .
\end{gathered}
$$

References

[1] R.M.Yamaleev, Geometrical and physical interpretation of evolution governed by general complex algebra. J.Math. Anal. Appl. 340(1) (2008),p.1046-1057.
[2] R.M.Yamaleev, Representation of solutions of n-order Riccati equation via generalized trigonometric functions. J.Math. Anal. Appl. 420(1) 12 (2014),p.334-347. http://dx.doi.org/10.1016/j.jmaa.2014.05.066
[3] R.M.Yamaleev, Multicomplex algebras on polynomials and generalized Hamilton dynamics. J.Math.Anal. Appl. 322 (2006) 815-824.
[4] R.M.Yamaleev, Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. J. Adv. Appl. Clifford Al. 15 No. 2 (2005) 123-150.
[5] R.M.Yamaleev, Solutions of Riccati-Abel equation in terms of characteristics of general complex algebra. Communications of Joint Institute for Nuclear Research E5-2012-129 (2012) 1-16.
[6] R.M.Yamaleev, Transformation of linear system of differential equations to the system of generalized Riccati equations. Europian J. of Mathematics 10(4) (2017),p.139-160.

