High-Accuracy Finite Element Method for the 2D Parametric Elliptic

Boundary-Value Problems

S.I. Vinitsky (JINR, Dubna)

A.A. Gusev,

O. Chuluunbaatar,
G. Chuluunbaatar,
(JINR)

06 July 2017

International Conference
“Mathematical Modeling and
Computational Physics’

The statement of the problem

Lagrange Finite Elements

Example of parametric 2D BVP
for a Helium atom

Resume




The statement of the problem

A self-adjoint elliptic PDE in the region z = (z, ..., Z4) € Q C RY (Q is polyhedra)

d
1(2) > a%g,-,-(z)a% V() —E| oz) =0,

9o

9(z) > 0, gi(z) = g;(z) and V(z) are the real-valued functions, continuous together
with their generalized derivatives to a given order.

The Dirichlet (I) and Neumann (IT) boundary conditions

o(z 00(2) &, 0(z
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Bd(;,;(z) is the derivative along the conormal direction
D

N is the outer normal to the boundary of the domain 0Q.

O.A. Jlanpokenckasi, Kpaesble 3anaun maremarndeckoit dusukn (M., Hayka, 1973)
B.B. Taiinypos, Muorocerounbie MeTobl KOHEIHBIX dneMenToB. (M., Hayka, 1989).



The statement of the problem

For a discrete spectrum problem the functions ®(z) from the Sobolev space

H2531(Q), bn(z) € H2521 (2), corresponding to the real eigenvalues E:
E1 SEZS-uSEmS

.. satisfy the conditions of normalization and orthogonality

(Pm(2)| P (2 /dzgo VYPm(2)Pm (2) = Oy, dz = dzy...dzg.

The FEM solution of the BVP is reduced to the determination of stationary points of

the variational functional

=(®m, Enm,2) = / 4200(2)m(2) (D — Enm) &(2) = N(®m, En, 2),

N(®m, En, 2) dz[z 61(2) 22 20E) | g3 2)0n(2)(V(2)-Em)@n(2)
Q =1 !

Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, Prentice-Hall,
Englewood Cliffs, New York (1973)



Lagrange Finite Elements

The piecewise polynomial functions M(z) are constructed by joining the shape
functions ¢)(z) in the triangle Ag:

Ni(z) = {w(Z),A/ € Dgi0,A ¢ Aq}

and possess the following properties:
functions N;(z) are continuous in the domain Q;
the functions Mj(z) equal 1 in one of the points A; and zero in the rest points.




Finite Element Method

Solutions ®(z) are sought in the form of a finite sum over the basis of local functions
NJ(z) in each nodal point z = zx of the grid Qx(2):

d(2) = Li ®LNI(2),

where L is number of local functions, and ¢/ are nodal values of function ®(z) at
nodal points z;.

After substituting the expansion into the variational functional and minimizing it, we
obtain the generalized eigenvalue problem

APe" = "BPe.

Here AP is the stiffness matrix; BP is the positive definite mass matrix; Eh is the
vector approximating the solution on the finite-element grid; and &” is the
corresponding eigenvalue.




Decomposition of a hypercube by means of simplexes

L T1 T2 Assertion. The d-dimensional
0.1 2> (0,0,0) 0,0,0) . .. g
oLy aen ©on - ©ob hypercube is divided into d! equal
.1, 1,0,1 o 5 .
(LL1) El,l,l; d-dimensional simplexes.
(Jg 5 (ng 5 The vertices of each of the simplex are
©10)  (0,10) located on broken lines, Composed of
Orn (1LY .
LL) (LD d mutually perpendicular edges, and
oo 050 the extreme vertices of all polygons
(0’1’0) (1.0.0) 83% E}?gi are located on one of the diagonals of
(0,0,0) L) (LLD the hypercube.

Algorithm.

Input: A single d-dimensional hypercube with g . .11 j = (i1, ...,ig), the
vertif:es whose coogdinates are either 0 or 1 in the permutations of the numbers
Euclidean space R°. A,...d):
The chosen diagonal of the hypercube connects o, a1 k
the vertices with the coordinates (0,...,0) and | 4.
(1,01) , . o _ [ 1, is<k,

Output. z,((') = (z,(('))w...,z,(('y)d) the coordinates of i-  “ks = 0, Is> k.

th simplex if det(z")d,y = -1 then
Local. The coordinates of the vertices of the () o

polygonal line are zx = (2k,1, ..., Zk,d), K =0, ..., d. Zkd 7 Zkd—1

= 0,..,d and s =




Structures of matrices




Example: the BVP for 3D Helmholtz Eq. for the cube with rip equal to

The solution of the 3D BVP with Neumann BCs using 3D LIPs of p = p’ =6th order.
Cube with rip 7 divided by 4% cubes each of them composed by 6 tetrahedrons.

The matrices A and B had dimension 15625 x 15625. Calculations was performed in
Maple 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512 GB RAM, GPU Tesla 2075.

The matrices A and B were calculated during 14 hours, on Maple, and AEP was

solved on Intel Fortran during 20 minutes.

E(F)

6.E-0030
1.0000000000000051
1.0000000000000063
1.0000000000000063
2.0000000000072494
2.0000000000072494
2.0000000000079230
3.0000000002770707
4.0000000000928759
4.0000000000932488

O © 0O U WN

=

E(M)
1.7(-12)
0.9999999997
0.9999999997
0.9999999997
2.0000000006
2.0000000015
2.0000000017
3.0000000405
4.0000000218
4.0000000237

E(F)-E(M)
1.7(-12)
0.0000000003
0.0000000003
0.0000000003
0.0000000006
0.0000000015
0.0000000017
0.0000000405
0.0000000218
0.0000000237




Example: the BVP for 6D Helmholtz Eq. for the cube with rip equal to 7

o nsubint:=3; dim:=6; idegr:=nsubint; nhex:=1;

e 84 =N _1(p)=(p+d)!/d!

o allpoints := 60480 N_A=n N _1(p)=720*84 product of number n of elements
and number N_1(p) of function in each of n elements.

o allpoint := 4096 N=4096 number of basis functions
@ bdomain(720) := 60480 n=d!=6!=720 is number of elements

o a low part of spectrum of 42 degenerate eigenvalues: 0.183360983479286 e-10 ,
1.00023, 1.00034, 1.00034, 1.00034, 1.00034, 1.00034,
2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760,
2.07391, 2.08478, 2.08478, 2.08478, 2.08478, 2.08478,
3.15060, 3.15196, 3.15196, 3.15196, 3.15196, 3.15196, 3.15780, 3.15780, 3.15780,
3.15780, 3.15780, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319,
3.16319, 3.16319

o Calculations was performed in Maple 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512
GB RAM, GPU Tesla 2075.
memory used=540540.0MB, alloc=1307.5MB, time=9234.46



The algorithm for calculating the parametric derivatives of
eigenfunctions ...

The generalized eigenvalue problem

.
Ao" = 'BPO" (o) B = 1.

The linear system of inhomogeneous algebraic equations w.r.to the unknown 9®” /0z

8¢h_ P hpp 8¢h_ _ OAP aé‘h D h
oo\,
(22 wser =,
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Step k1. Calculate the solutions Vv and W of the auxiliary inhomogeneous systems

algebraic equations with the non-degenerate matrix L

v R Cny T _ Lss’: (S_S)(SI_S)#()’
Lv= b’ Lw = d, LSS/ B { 655’7 (S - S)(Sl - S) = Oa

B _ bSa 57& S7 d _ LSS7 S# 87
°*710 s=S8, °*~10 s=8,

where S is the number of the element of the vector B°P®" having the greatest
absolute value.

Step k2. Evaluate the coefficient ~

=y =V BPO", 4, =wW'BPO", D= (B°®")s.
(Ds —72)

Step k3. Evaluate the vector 5,0"

PN [ ve—ws, S#S,
0z =S

From the above consideration it is evident, that the computed derivative has the
same accuracy as the calculated eigenfunction.



The potential matrix elements H,;’ (2) and Q{; (2), needed, for example, in Kantorovich

reduction, defined as

Hj(2)=H;(z /dxg( )8¢ (X z) 0%j(x; 2)

oz '’

Qj(2)=—Qu(2)= /dxgo(x)d> (x; Z)M

The potential matrix elements H,;-’(z) and O,?(Z) can be calculated using the formulas

oo\ odh T __ooh
o= () w5 ae=- (o) 5L




Let D(x; z) be a continuous and bounded positively defined operator on the space H'
with the energy norm, ®;(x,z) € H2. Then the following estimates for £7(2),

¢?(X; z) e H' are valid [Strang, G., Fix, G.J.: An Analysis of the Finite Element
Method. Prentice-Hall, Englewood Cliffs, New York (1973).]

s(2) —&l(@)] < atf®, ||oixiz) - ol 2)| < ek,
[0 2)15 = | axgo()®i(xi 2)0,(x:2),
Qx
where h is the largest distance between any two points in Ag, p is the order of the

finite elements, /i is the number of the corresponding solutions, and the constants C.
are independent of the step h.

Also let 8,U(x; z) be continuous and bounded for each value of the parameter z, and
d:®i(x; 2) € H?. Then the following estimates for d,¢7(2), 9,9M(x; 2) € H', H,7(Z),
0,7(2)) are valid:

< C4hp+17
0

Oei(z) del(2) 09i(x;2) 0%} (x; 2)
0z 0z 0z 0z

‘Qij(z) - O,?(z)\ < csh?, ‘H;,-(z) - H,-j-’(z)( < cshPP.

< C3h2p7 H




Example: model of a Helium atom

The parametric 2D BVP for model of a Helium atom

14+0)2—(1-X1)2%—8(1-)3)
VARHTXP

92 L2yl )
a1V 555, (1 n)an+\/§R(1 by

2_(142)*—(1-2)*’

@0z (e | PO R0

+1=A—ei(R)(1-X)

The boundary and normalization conditions

opi(\,mR) e 2.0pi(A\m; R)
R A

1 /! L 140)2—(1=X)272
2 [ [ 0 G e O =

i X1 -0

The calculations were carried out using the server 2x4 kernels i7k (i7-3770K 4.5 GHz,
32 GB RAM, GPU GTX680), and the Intel Fortran compiler 17.0. The computing
time for the considered examples with 10~ "2 accuracy on the uniform grids
A={0(L)1}, n ={0(L)1} at L = 10,20,40 is 0.38, 5.08 and 41.21 seconds,
respectively.




Example: model of a Helium atom

The eigenfunction p1(A,n; R) and its The eigenfunction p4(>}~, n; R) and its
parametric derivative dgp1 (X, n; R) at arametric derivative Oppa(A, m; R) at




Example: model of a Helium atom

Comparison of the transformed potential curves Ej(R) = (g;(R) — 3)/4 their first

derivative by parameter R with results * at jmax = 12. The mesh points are

A={0(L)1} and n = {0(L)1}, and R = 7.65 a.u..

E(R) (L=10)

E(R) (L=20)

E(R) (L= 40)

Ei(R) *

-63.498 825 358
-21.451 886 770
-19.082 401 572
-13.371 479 034
-11.876 674 062

-8.898 971 861

-63.499 151 482
-21.451 891 369
-19.082 406 568
-13.371 481 948
-11.876 679 657

-8.898 980 996

-63.499 153 248
-21.451 891 391
-19.082 406 592
-13.371 481 961
-11.876 679 683

-8.898 981 042

-63.499 153 256
-21.451 886 907
-19.082 325 834
-13.371 480 623
-11.876 677 566

-8.897 839 854

9rE(R) (L=10)

9rE(R) (L= 20)

9rE(R) (L= 40)

OrEj(R)

SO WN RO TR W N .

-15.795 727 590
-3.997 423 220
-4.142 653 692
-3.897 819 472
-3.314 361 245
-2.705 442 515

-15.796 133 881
-3.997 429 139
-4.142 660 186
-3.897 822 446
-3.314 363 641
-2.705 445 914

-15.796 136 178
-3.997 429 168
-4.142 660 217
-3.897 822 460
-3.314 363 652
-2.705 445 931

-15.796 136 189
-3.997 431 891
-4.142 711 985
-3.897 824 374
-3.314 347 679
-2.705 544 197

x Gusev, A.A., Chuluunbaatar, O., Vinitsky ,S.I., and Abrashkevich, A.G.,

“POTHEA: a program for computing eigenvalues and eigenfunctions and their first
derivatives with respect to the parameter of the parametric self-adjoined 2D elliptic
partial differential equation,” Comput. Phys. Commun. 185 (10), 2636-2654 (2014).




Resume

e High-accuracy finite element method for solving the 2D parametric elliptic
self-adjoint boundary-value problems is presented.

o The triangular elements and new high-order fully symmetric Gaussian
quadratures with positive weights, and no points are outside the triangle (PI
type) is applied. The program calculates with the given accuracy the
eigenvalues, the surface eigenfunctions and their first derivatives with respect to
the parameter of the BVP for parametric self-adjoint elliptic differential
equation with the mixed Dirichlet-Neumann type boundary conditions on the
2D polygonal domain, and the potential matrix elements, expressed as integrals
of the products of surface eigenfunctions and/or their first derivatives with
respect to the parameter.

o We demonstrated an efficiency of finite element schemes and program by means
of benchmark calculations the 3D boundary-value problem for Helium atom
bound states in the framework of Kantorovich method.

Thank you for your attention





