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Recap lecture 3

e To study a full fledged string theory in a non-trivial
background is very complicated

* The low energy limits of various string theories are
10 (9+1) dimensional theories of point particles



Recap lecture 3

To study a full fledged string theory in a non-trivial
background is very complicated

The low energy limits of various string theories are
10 (9+1) dimensional theories of point particles

We can “compactify” 6 dimensions on the product
of six circles (or more complicated spaces)

This gives rise to a 4 (3+1) dimensional theory with

many massless scalar fields plus many massive

scalar fields (the so called KK-tower) with MKK~%



Recap lecture 3

* Precision measurements of gravity require for a
single extra dimension R < 10™* meters

* The Planck length is [, = 1073> meters
* Plenty of room for extra dimensions of space



Recap lecture 3

* The simplest string compactification involves the
product of three identical T? = S! x S*

 There are three real parameters

R{R, controls the size

R
R—1 and 8 control the shape
2
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* These parameters appear in the metric
Iun (xH*,y")
and are therefore spacetime dependent, i.e. they

are dynamical fields



Recap lecture 3

* These parameters appear in the metric
gun (x*, y")
and are therefore spacetime dependent, i.e. they
are dynamical fields
* Reducing our 10d theory to 4d via
S =[d*xd®y \—g10(...) = | d*x \J/=g4l...]

they will give rise to three real 4d scalar fields



Recap lecture 3

 The 10d theory contains other fields

* Two scalars ¢ and C, that can be combined into one
complex scalar S = Cy +ie™?



Recap lecture 3

The 10d theory contains other fields

Two scalars ¢ and C, that can be combined into one
complex scalar S = Cy +ie™?

The string coupling (interaction strength) is given by
Is = e?

One field with four indices that can extend along
the internal directions Cy;nop t0 give a 4d scalar ¢,



Recap lecture 3

Upon reducing these to four dimensions we get:

One complex 4d scalar S(x*) = C, +ie™?

One complex 4d scalar T (x*) = ¢4 + (R{R,)?

R .
One complex 4d sclar U(x#) ~ R—l el v
2

This is the so called STU model



Recap lecture 2

e Supergravity (SUGRA) is a theory that is invariant
under local supersymmetry transformations

* This requires the theory to be invariant under local

Lorentz transformations i.e. we need general
relativity (GR)



Recap lecture 2

Supergravity (SUGRA) is a theory that is invariant
under local supersymmetry transformations

This requires the theory to be invariant under local
Lorentz transformations i.e. we need general
relativity (GR)

The invariance under this additional supersymmetry
constrains the resulting theory

The bosonic part of the action together with
supersymmetry determines the fermionic action



Recap lecture 2

* Inadd N = 1 theory without vectors the bosonic
action is given by (we now set Mp = 1)

1 .
S=[d* =g (ER — K;70,¢' 0" ¢’ — VF>



Recap lecture 2

* Inadd N = 1 theory without vectors the bosonic
action is given by (we now set Mp = 1)

1 .
S=[d* =g (ER — K;70,¢' 0" ¢’ — VF>

Ve = eX(KYD,WD,W — 3|W|?)

K =K(¢',¢)), W =Ww(e)



The STU model

* The string compactification from above for {¢'} =
{S,T, U} gives after compactification

K = —log(—i(S —5)) — 3log(—i(T = T)) — 3log(—i(U — 1))

wWw=20



The STU model

* The string compactification from above for {¢'} =
{S,T, U} gives after compactification

K = —log(—i(S—$)) —3log(—i(T = T)) — 3log(—i(U — 1))
W=20

=> DW=, W —W dsK =0



The STU model

* The string compactification from above for {¢'} =
{S,T, U} gives after compactification

K = —log(—i(S—$)) —3log(—i(T = T)) — 3log(—i(U — 1))
W=20

=> DW=, W —W dsK =0

= Vg =eX(KYD,WD,W —3|W|?) = 0



How do we generate a potential?

 We can threat the internal space with fluxes

* For example, we can have Fyiy2 # 0 so that

dz \/gTzF 1y, 2 FY v =V(q5’) * 0



How do we generate a potential?

 We can threat the internal space with fluxes

* For example, we can have Fyiy2 # 0 so that

2 d*y \/9T2Fylyzpyly2 =V(p") #0
T

* The particular type lIB string theory only has fluxes
with 3-indices that we can turn on Fynp and Hyno



How do we generate a potential?

 We can threat the internal space with fluxes

V(qbl,gbz); | - VA fc ‘




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S —5)) — 3log(—i(T = T)) — 3log(—i(U — 1))

W = Weyw (S, U)



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S — $)) — 3log(—i(T — T)) — 3log(—i(U — 1))

W = Weyw (S, U)
DWW = oW +WorK =0 — i
T — — T T s

3
K = OrorK = — = .
‘1T Orork (T —T)2




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S — $)) — 3log(—i(T — T)) — 3log(—i(U — 1))

W = Weyw (S,U)
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e _3 T—-T
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The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S —5)) — 3log(—i(T = T)) — 3log(—i(U — 1))

W = Weyw (S, U)
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The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification
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The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S —5)) — 3log(—i(T = T)) — 3log(—i(U — 1))

W = Weyw (S, U)

KT D WD W = — (T —3 I)” (_ T‘SI"{"'T) (TSI_;IET) = 3|W|?

V = X (K" DyWDW + K3DsWDsW + K'Y Dys WDy W — 3|W |Q)

_ K (K-%‘DSH.-«-’W + I{L"i["erUiI--If-"m) |



The STU model

e (K™ DrWDrW + K55 DsWDsW + K" Dys WDy, W - 3[W )

K (K55 DsWDsW + K" Dy WD W) -

€



The STU model

V = ef (I{TT D+ W D+ W + KrS‘gDs WDsW + I{U@ED viW Dy W — 3 ”"{;F)
— oK ( KSSDsWDsW + h’i-"“"’famvm) |

e The modulus T satisfies the so called no-scale property since its contribution mside
the parenthesis cancels the —3|W|? term.



The STU model

Vo= K (I{Tf DrWDW + K3¥DsWDsW + KUV Dys WDy W — 3”,.1,12)
_ oK (1{55' DWDW + KV D,.. WDy, w) |

e The modulus T satisfies the so called no-scale property since its contribution inside
the parenthesis cancels the —3|W|? term.

e The Kahler metric controls the kinetic terms and therefore has to be positive defi-
nite. This means that the above scalar potential is the sum of two positive definite
terms.



The STU model

Vo= ( K™ DyWDW + K5 DsWDsW + KU Dy W Dps W — 3w )
— oK ( KSSDsWDsW + f{i-'”f"fawWW) |

e The modulus T satisfies the so called no-scale property since its contribution mside
the parenthesis cancels the —3|W|? term.

e The Kahler metric controls the kinetic terms and therefore has to be positive defi-
nite. This means that the above scalar potential is the sum of two positive definite
terms.

eK o e—310g(—i (T-T)) — 1 %

8Im(T)? ~ 8Im(T)

F(S,U,S,U)



The STU model

V. = (I TT'DTI1 DTIT _|__.'.L/L SbD TV Db[T —‘—Iﬂ[ bjDUt-[.{fm_ 3|IIT|2)
= ¢ (KSSDsWDsW + KV Dy WD W)

e The modulus T satisfies the so called no-scale property since its contribution mside
the parenthesis cancels the —3|W|? term.

e The Kahler metric controls the kinetic terms and therefore has to be positive defi-
nite. This means that the above scalar potential is the sum of two positive definite
terms.

o 1 1 _
K « g=3log(=i(T-T)) — = V= F(S,U,S,U
© e 8 Im(T)? g im(ny >V S U)

OimnV =~ 5z FS,UST) > Im(T)=c0 or F=0



The STU model

Vo (1 T D WDW + KSSDsWDsW + KV '5"’“DU@-1-*1-’9@1-1-*’—3|W|9)
_ K (1 SSDWDW + KV [JDUJI»-”DWI-"[f) |

e The modulus T satisfies the so called no-scale property since its contribution mside
the parenthesis cancels the —3|W|? term.

e The Kahler metric controls the kinetic terms and therefore has to be positive defi-
nite. This means that the above scalar potential is the sum of two positive definite
terms.

o 1 1 _
K « g=3log(=i(T-T)) — = V= F(S,U,S,U
© e 8 Im(T)? g im(ny >V S U)

OV = —SIm(T)BF(S U,S0) = Im(T)=o or F=0

/

Size of the internal space is infinite! Not 4d!



The STU model

Vo= (I{TTDTH DWW + KSSDsWDW + KUV DL”-[.J[;-’—DUJ-{,.{;_3|{,.{,-r|2)
—~ (K SDsWDsW + KY {J”D{,.mf'ﬂmW) |

e The modulus T satisfies the so called no-scale property since its contribution mside
the parenthesis cancels the —3|W|? term.

e The Kahler metric controls the kinetic terms and therefore has to be positive defi-
nite. This means that the above scalar potential is the sum of two positive definite
terms.

o 1 1 _
K « g=3log(=i(T-T)) — = V= F(S,U,S,U
© e 8 Im(T)? g im(ny >V S U)

OV = —SIm(T)BF(S U,S0) = Im(T)=o or F=0

Need DUW = D5W =0



The STU model

V = (K™ DyWDrW + K55 DsWDsW + KV Dy WDy, W — 3|W IQ)

_ K ( KSSDsWDsW + KV D,.W Dy U) |

Need DyW = DW =0

* We have to solve two complex equations for two complex
variables S and U



The STU model

Vo oK (I{TT Dy WDV + KSSDsWDW + KU 7 Dy WDy W — 3 W |z)

K (KSSDsWDSW + I{["”"TDUL-I--If-’m) |

Need DyW = DW =0

We have to solve two complex equations for two complex
variables S and U

Generic solutions are isolated points (no massless directions)



The STU model

V — o K (HFTT DT I-'ﬁ«"r—DTI-"][’? + K Ss DS‘ I-'i"r—DSI’][’? + K Ui D{.-'t’ W DUJ' I*"I-"_'r — 3 |H |2)

K SS Ds HDE,—H 4+ KE-”'E.H Dy HW) _

Need DyW = DW =0

We have to solve two complex equations for two complex
variables S and U

Generic solutions are isolated points (no massless directions)

The masses have to positive since IV = 0 so that
V(Simin Umin) = 0 is a global minimum



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = —log(—i(S —5)) — 3log(—i(T = T)) — 3log(—i(U — 1))

W = Weyw (S, U)



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = Weyw (S, U) = Weyw (Smin, Umin) = Wy = const.
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* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W=W0
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* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))
W — WO
* Re(T) » Re(T) + ¢, is a continuous shift symmetry which is

forbidden in string theory (potentially in any theory of
guantum gravity)



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W=WO

* Re(T) » Re(T) + ¢, is a continuous shift symmetry which is
forbidden in string theory (potentially in any theory of
guantum gravity)

* There are non-perturbative corrections that lift it



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))
W =W, + Ae@T + ¢ (A eiaT)Z + .- A,a,c~0(1)

* Re(T) » Re(T) + x, is a continuous shift symmetry which is
forbidden in string theory (potentially in any theory of
guantum gravity)

 There are non-perturbative corrections that lift it



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))
W =W, + Ae@T + ¢ (A eiaT)Z + .-

* To keep only the leading term we need
: : 2
|AelaT| >> |AelaT|



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))
W =W, + Ae@T + ¢ (A eiaT)Z + .-
* To keep only the leading term we need

| AeiaT| > | Aeiale
1> |AeT| = |4e~aIm(D))



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))
W =W, + Ae@T + ¢ (A eiaT)Z + .-

* To keep only the leading term we need
| AeiaT| > | Aeiale
1> |AeT| = |4e~aIm(D))
alm(T) > 1



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + AeldT

‘Hrﬂ + A EiaT

— I'=0+1
Ir—-T g

DWW = 0y W + WorK = iaAe*’t — 3




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + Ae@T

‘Hrﬂ + A EiaT

— I'=0+1
Ir—-T g

DWW = 0y W + WorK = iaAe*’t — 3
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0 = Re(DyW) = —aAe *Im(e'™) — 3 5
2p




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + Ae@T

‘Hrﬂ + A EiaT

DrW = 0rW + WorK = iaAe™’ —3 T

Ae™%Tm(e'?) Re(T)=b=0

0 = Re(DyW) = —aAe *Im(e'™) — 3 5
2p




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = WO + AeiaT

Wyt AT |
DrW = 0pW + WorK = iaAe™T — 32002 T—b+ip
T7—T
e o AePIm(e (Y — b
0 = Re(DrW) = —aAe™*Im(e?) — 3 ‘ 9111(( ) Re(T)=b=0
2p

W Ae—ap
0= In(Dr V) = ade= 4 310 AC
0




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + Ae@T

‘Hrn + A Eiu.’:,]”
T-T

DW = 0+W + Wor K = iaAet — 3

. ,—ap 7iu.c:b
0 = Re(DyW) = —aAe %Im(e'??) — 3‘4‘? Im(e”)

2p

Wy + Ae=

0=Im(DrW) =aAe™ " +3 Wo =
2p




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + AeldT

. 2
T — b ‘|_ 110 RQ(T) — b — 'D 1”?1] — _flff_ﬁpmin (1 —l_ §(1-;0-m.iﬂ> % 0



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U} gives after compactification

K = -3log(—i(T-T))

W = W, + AeldT

. 2
T — b ‘|_ 110 RQ(T) — b — 'D 1”?1] — _flff_ﬁpmin (1 —l_ §(1-;0-m.iﬂ> % 0

DTWZO

Ve = eX(KTTD; WD W — 3|W|?) Ve = —3eX|W]2 < 0



The STU model

Vip)

1.x 10-14

< | |
5.%10713

180



The STU model

......
n

* We need a new ingredient that takesusto V,,;;;, > 0

* Can add a higher dimensional stringy object D3



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+ﬂNEWKKLT+‘UN
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* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+ﬂNEWKKLT+‘UN

N isvery special it does not correspond to a usual
supersymmetry multiplet with scalar and fermion. It contains
only one single fermion y. y is the goldstino



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+ﬂNEWKKLT+‘UN

N isvery special it does not correspond to a usual
supersymmetry multiplet with scalar and fermion. It contains
only one single fermion y. y is the goldstino

e Supersymmetry is now broken and non-linearly realized

 The would be scalar in N is a fermion bilinear yy !



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN
W = W0+AeiaT+ﬂNEWKKLT+‘UN

e Use the usual formula butset N = 0 in the end since it is a
fermion bilinear and we only care about the scalars



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+ﬂNEWKKLT+‘UN

e Use the usual formula butset N = 0 in the end since it is a
fermion bilinear and we only care about the scalars

DNW = ONW +WoyK =+ WN — .



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+ﬂNEWKKLT+‘UN

e Use the usual formula butset N = 0 in the end since it is a
fermion bilinear and we only care about the scalars
DxW = W +WiyK = 1w+ WN — 1w

3
DWW = oW +WorK = orWgkrr — T 7 Wkkir = DrWkikrr



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+MNEWKKLT+‘UN

DyW = OyW +WonK =pu+WN = p,
q
DWW = oW +WorK = orWgkrr — T 7 Wkkir = DrWkikrr



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W = WO +AeiaT+ﬂN = WKKLT+.LLN
DNW = W +WoNK = u+WN = p.

3
DWW = oW +WorK = orWgkrr — T 7 Wkkir = DrWkikrr

We see that supersymmetry is now broken since DyW = u # 0



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W = WO +AeiaT+,UN = WKKLT+.LLN
DWW = ONW +WonK =+ WN =y,

3
DWW = W +WorK = 0rWgkrr — ﬁﬂfﬁ kT = DrWgkrr

V = (K""DWDsW + KNYDyWDyW — 3|[W|?)



The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+,UNEWKKLT+,UN

DyW = OyW +WonK =pu+WN = p,
| 3
DWW = oW +WorK = orWgkrr — T 7 TH’TK kir = DrWikkrr

Vo= e KTT D, WD W + KNNDyWDNW — 3 W%

]- ~TT - - D) r 9
— 8—93( K T DTI"'I’" KKLT DTH__,. KKLT + | ‘u_|~ _ 3|1[_.1;_ h’h’LT|‘)




The STU model

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification

K = —3log(—i(T —T)) + NN

W=W0+AeiaT+,UNEWKKLT+,UN

DyW = OyW +WonK =pu+WN = p,
| 3
DWW = oW +WorK = orWgkrr — T 7 TH’TK kir = DrWikkrr

Vo= e KTT D, WD W + KNNDyWDNW — 3 W%

]- ~TT - - D) r 9
— 8—,()3( K T DTI"'I’" KKLT DTH__,. KKLT + | ‘u_|~ _ 3|1[_.1;_ h’h’LT|‘)

: |ul?
= Vkkrr + —=-
KKLT T 353
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For an appropriate choice of u we find V,,;,, > 0
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* For an appropriate choice of u we find V,;,;;;, > 0
* One can in principle fine-tune V,,,;,, ~ 107129



The STU model

L 1 1 L
140 160

* For an appropriate choice of u we find V,;,;;;, > 0
* One can in principle fine-tune V,,,;,, ~ 107129

* SUSY breaking scale DyW = u independent of I.,,;,



