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Recap lecture 4

• For an appropriate choice of 𝜇 we find 𝑉𝑚𝑖𝑛 > 0

• One can in principle fine-tune 𝑉𝑚𝑖𝑛 ≈ 10
−120

• SUSY breaking scale 𝐷𝑁𝑊 = 𝜇 independent of 𝑉𝑚𝑖𝑛
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Looks like a good candidate 
for natural inflation
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Natural inflation

𝑉 𝑏 = 𝜆4 1 + cos
𝑏

𝑓

• In order to match onto observations we need 𝑓 > 𝑀𝑃 =
1 but not by that much so 𝑓 ≈ 10 𝑀𝑃 = 10 or a little bit 
larger would be sufficient

• However, in controlled regimes of string theory the 
axion decay constant 𝑓 seems to be always smaller than 
𝑀𝑃 = 1

Banks, Dine, Fox, Gorbatov hep-th/0303252
Svrcek, Witten  hep-th/0605206
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• Another proposal to extend the axion decay constant 
requires a large number 𝑁 ≫ 1 of scalars

Liddle, Mazumdar, Schunck astroph/9804177

Dimopoulos, Kachru, McGreevy, Wacker    hep-th/0507205
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• Another proposal to extend the axion decay constant 
requires a large number 𝑁 ≫ 1 of scalars

Liddle, Mazumdar, Schunck astroph/9804177

Dimopoulos, Kachru, McGreevy, Wacker    hep-th/0507205

• String theory compactifications can certainly have many 
scalars with 𝑁 ≈ 𝑂(100 − 1000)

• The idea is essentially                                         
``Pythagoras theorem’’:

2Δ𝜙
Δ𝜙

Δ𝜙

Natural inflation from string theory?
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N-inflation

• The idea is essentially                                         
``Pythagoras theorem’’

• If we displace 𝑁 identical                                                            
scalars by the same amount                                                    

we get an enhancement by 𝑁

• We usually expect 𝑓 to be not that much smaller than 

𝑀𝑝 so that we can have 𝑁𝑓 ≈ 10 𝑀𝑃

Natural inflation from string theory?



Natural inflation from string theory?

Alignment

• It is possible to get a super Planckian 𝑓, if one considers 
a model with two scalars that both have sub-Planckian
𝑓’s

Kim, Niles, Peloso hep-ph/0409138

𝑉 = 𝜆1
4 1 + cos

𝑏1
𝑓1
+
𝑏2
𝑓2
+ 𝜆2
4 1 + cos

𝑏1
𝑔1
+
𝑏2
𝑔2

𝑓1, 𝑓2, 𝑔1, 𝑔2 < 𝑀𝑃
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Alignment

𝑉 = 𝜆1
4 1 + cos

𝑏1
𝑓1
+
𝑏2
𝑓2
+ 𝜆2
4 1 + cos

𝑏1
𝑔1
+
𝑏2
𝑔2

If 
𝑓1

𝑓2
≈
𝑔1

𝑔2
, then we can define 𝑏 = 𝑏1 +

𝑓1

𝑓2
𝑏2= 𝑏1 +

𝑔1

𝑔2
𝑏2

The direction orthogonal 

to 𝑎 is the inflaton and can 

have arbitrarily large 𝑓

Natural inflation from string theory?

almost flat direction
= large 𝑓



Axion monodromy inflation
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Axion monodromy inflation

Example:
flux quanta (can be chosen)

axion = inflatonone extra scalar field
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Example:

Axion monodromy inflation

two term stabilization of 𝑢
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Example:

𝜕𝑢𝑉 = 0 ⇒

Flattening:                               

Axion monodromy inflation
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Axion monodromy inflation

Generic feature in these models:

• One or more fields adjust their value during 
inflation and thereby flatten the scalar potential
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Axion monodromy inflation

Generic feature in these models:

• One or more fields adjust their value during 
inflation and thereby flatten the scalar potential

• There is some freedom in choosing fluxes to control 
the flattening

• We find  𝑝 = 3, 2,
4

3
, 1,
2

3
in some string models
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Axion monodromy inflation

In string theory:  𝑉 𝜙 ∝ 𝜙𝑝, 𝑝 = 3, 2,
4

3
, 1,
2

3


