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Recap lecture 4

* The string compactification from above with fluxes
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* For an appropriate choice of u we find V,;,;;;, > 0
* One can in principle fine-tune V,,,;,, ~ 107129

* SUSY breaking scale DyW = u independent of I.,,;,
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The scalar potential

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification
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Looks like a good candidate

Sy — A\ el
V(b) = Al — Ay cos(ab) for natural inflation
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Natural inflation

V(b) = 1% (1 + cos (;))

* In order to match onto observations we need f > Mp =
1 but not by that much so f = 10 Mp = 10 or a little bit
larger would be sufficient

 However, in controlled regimes of string theory the
axion decay constant f seems to be always smaller than
MP —_ 1
Banks, Dine, Fox, Gorbatov hep-th/0303252
Svrcek, Witten hep-th/0605206
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The scalar potential

* The string compactification from above with fluxes
for {¢p!} = {S, T, U, N} gives after compactification
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Natural inflation from string theory?

N-inflation

* Another proposal to extend the axion decay constant
requires a large number N > 1 of scalars
Liddle, Mazumdar, Schunck astroph/9804177
Dimopoulos, Kachru, McGreevy, Wacker hep-th/0507205



Natural inflation from string theory?

N-inflation

Another proposal to extend the axion decay constant
requires a large number N > 1 of scalars
Liddle, Mazumdar, Schunck astroph/9804177

Dimopoulos, Kachru, McGreevy, Wacker hep-th/0507205

String theory compactifications can certainly have many

scalars with N = 0(100 — 1000)
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“"Pythagoras theorem””:
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Natural inflation from string theory?

N-inflation

* The idea is essentially
“Pythagoras theorem”

* If we displace N identical
scalars by the same amount

we get an enhancement by VN J

* We usually expect f to be not that much smaller than
M,, so that we can have VNf =~ 10 Mp




Natural inflation from string theory?

Alienment

* Itis possible to get a super Planckian f, if one considers
a model with two scalars that both have sub-Planckian

f’s

Kim, Niles, Peloso hep-ph/0409138

b b b b
V=A4ll+cos<1+ 2>]+/14[1+Cos<1+ 2)]
! fi [z 2 g1 92

f1, 12,91, 92 < Mp




Natural inflation from string theory?

Alienment

4 b4 b 4 by by
V =471+ cos + A5 |1 + cos +
f1 fz g1 92

fi _ 91 fi 49
If === th defineb = b b,=Db b
P en we can define 1+ = 7 D2 1 T 7, 02




Natural inflation from string theory?

Alienment

4 b4 b 4 by by
V =471+ cos + A5 |1 + cos +
f1 fz g1 92

fi _ 91 fi 49
If === th defineb = b b,=Db b
P en we can define 1+ = 7 D2 1 T 7, 02

V=27 [1 +cos<b>-
fi

+15 [1 + cos (gbl)_




Natural inflation from string theory?

Alignment
b, b, b, b,
V=/14[1+cos< + >]+A4[1+cos< +
. fi f . g1 92
if L1 = 91 then we can define b = by + L b, = by + = b,
f2 92 2 g2
flat direction -
] = infinite f P . P 8
4 b B, & h
V =A7|1+ cos | N = -
fl [ i }" 0 th:
) VA e e ’f~
+25 [1 + cos ( : ) \ &
91/ -




Natural inflation from string theory?

Alignment
by b, by b,
V=/14[1+cos< + >]+/14[1+cos< +
. fi f . g1 92
i L =91 then we can define b = b4 + L4 b, = b4 +&b2
2 92 2 g2
flat direction -
] = infinite f e i e
. b < 4 T
V =A7|1+ cos B N\ s
f 1/ Iﬁ R %,‘ ¥ = \ ;
+25 [1 + cos ( ) o
91/ -



Natural inflation from string theory?

Alienment

4 b4 b 4 by by
V =471+ cos + A5 |1 + cos +
f1 fz g1 92

fi fi 49
If =% ~ == th defineb = b b, =D b
PR en we can aefine 1+ = 7 D2 1 T 7, 02

almost flat direction "
= large f I -

The direction orthogonal
to a is the inflaton and can N

have arbitrarily large f
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Axion monodromy inflation

flux quanta (can be chosen)

Example: / l

V~M4 gj [le Q22

;

one extra scalar field axion = inflaton
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Example:

4 2 2
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o V=0 u=>" 2,1
b \|Q, b

Flattening: V oc b® —> V o« b?




Axion monodromy inflation

Generic feature in these models:

 One or more fields adjust their value during
inflation and thereby flatten the scalar potential

V(b,g') =) c, (¢ )b —mb=l s E(gl ybP, (p< p,)




Axion monodromy inflation

Generic feature in these models:

 One or more fields adjust their value during
inflation and thereby flatten the scalar potential

V(b,g') =) c, (¢ )b —mb=l s E(gl ybP, (p< p,)

* There is some freedom in choosing fluxes to control
the flattening

* Wefind p = 3, 2,%, 1,% in some string models
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