A fresh view of cosmological models describing very early Universe:

general solution of dynamical equations with application to inflation.
Alexandre T. Filippov, JINR, Dubna (Helmholtz -- DIAS-TH School, 2016)

The dynamics of any spherical cosmology with a scalar field (“scalaron') coupling to gravity is
described by the nonlinear second-order differential equations for two metric functions and

the scalaron depending on the ‘time' parameter t. The equations depend on the scalaron
potential and on arbitrary gauge function that describes reparametrizations t --> f(t).

This dynamical system can be integrated for flat, isotropic models with very special potentials.

But, somewhat unexpectedly, replacing the independent variable t by one of the metric
functions allows us to completely integrate the general spherical theory in any gauge and with
arbitrary “potential’. In this approach, inflationary solutions are easily identified, explicitly
derived, and compared to the standard approximate expressions.

This approach can also be applied to intrinsically anisotropic models with a

massive vector field (‘vecton') as well as to some non-inflationary models.

More recent work on inflation and quantum cosmology is also very briefly reviewed.

Note: If we consider the origin of the universe from nothing’, we must be ready to treat it with
some sort of a generalized quantum mechanics. The simplest idea — to consider small
perturbations on a classical background (like in the theory of solitons) or quasiclassics. But,
deeper approaches try to include a "back reaction’ —to quantize the "background’ (Q-gravity).
Note that the standard quantization of the spherically symmetric gravity is still useful.
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Beginning of quantum cosmology
J.Halliwell, Introductory lectures on quantum cosmology, 1990 (arXiv:0909.2566)
(a thorough review of approaches to quantum cosmology, including work of
J.Wheeler, B.De Witt, S.Hawking, J.Hartle, A.Vilenkin, V.Rubakov, etc.).
[see also A.Vilenkin, "Many worlds in one’(2006). @Rus.tr.]
Note the later papers of J.Hartle on quantum mechanics of the spacetime in cosmology:

(see, e.g., gr-qc/0602013, 1608.0414 and many other papers).
We only give a hint of these ideas.

Ideas on relation between entanglement in quantum theory and gravity

Raphael Bousso and Leonard Susskind, The multiverse interpretation of quantum
mechanics, 1105.3796 (discussion of decoherence of g-states in modern approach)

Mark van Raamsdonk, Comments on quantum gravity and entanglement, 0907.2939
Building up spacetime with quantum entanglement, 1005.3035 (short essay)

Dmitri Fursaev, Proof of holographic formula for entanglement entropy, hep-th/0606184
Juan Maldacena and L. Susskind, Cool horizons for entangled black hole, 1306.0533

L.Susskind, Copenhagen vs Everett, teleportation, and ER=EPR, 1604.02589,



Two quotations
J. Hartle:

The founders of quantum theory thought that the indeterminacy of quan-
tum theory “reflected the unavoidable interference in measurement dictated
by the magnitude of the quantum of the action” (Bohr). But what then is
the origin of quantum indeterminacy in a closed quantum universe which is
never measured? Why enforce the principle of superposition in a framework
for prediction of the universe which has but a single quantum state? In short,
the endpoint of this journey of generalization forces us to ask John Wheeler’s
famous question, “How come the quantum?” |60].

Could quantum theory itself be an emergent effective theory? Many have
thought so (Section 2). Extending quantum mechanics until it breaks could
be one route to finding out. ‘“Iraveler, there are no paths, paths are made
bv walking.’

J.Maldacena and L.Susskind: Cool horizons for entangled black holes, 1306.0533
General relativity contains solutions in which two distant black holes are connected
through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can
be interpreted as maximally entangled states of two black holes that form a complex
EPR pair. We suggest that similar bridges might be present for more general entangled

states.



Generalizing Quantum Mechanics
for Quantum Spacetime!

James B. Hartle

Three features of quantum theory are striking from the present perspective: its success, its
rejection by some of our deepest thinkers, and the absence of compelling alternatives.

A Short History of Spacetime and Quantum Theory

Newtonian Physics

Fixed 3-d space and
a single universal
time .

Non-relativistic Quantum Theory:
The Schrodinger equation

th(O¥/ot) = HY
holds between measurements in the
Newtonian time ¢.

Special Relativity

Fixed flat, 4-d
spacetime with many
diifferent timelike
directions.

Relativistic Quantum Field
Theory:

Choose a Lorentz frame with time ¢.
Then (between measurements)

th(Ov/ot) = HV .
The results are unitarily equivalent to

those from any other choice of Lorentz
frame




General Relativity

Fixed, but curved
spacetime geometry

Quantum Field Theory in Curved
Spacetime:

Choose a foliating famliy of spacelike
surfaces labeled by ¢. Then (between
measurements)

th{(OW/8t) = HW .
But the results are nof generally
unitarily equivalent to other choices.

Quantum Gravity

Geometry is not
fixed, but rather a
quantum variable

The Problem of Time:
What replaces the Schrodinger
equation when there is no fixed
notion of time(s)?

M-theory, Loop
quantum gravity,
Posets, etc.

Spacetime is not even
a fundamental vari-

able

“

Here, we must clarify the meaning of what is the fixed geometry’. Below we discuss the
desciption of the spherical cosmology in terms of classical dynamics for the ‘'matter’ and
‘gravity’ variables on equal footing and then "naively’ quantize these variable using the standard
guantum mechanical rules. In this example, the geometry is not comletely fixed (I propose to
call it "partially fixed’). We may also note that the Schroedinger equation is not the unique tool
for quantizing and, probably, not the best in tis context.




SUPERSTRING vacua ?

NB: partly fixed spacetime
(symm.): metric&matter
are quantum variables

are miniuniverses in the
MULTIVERSE closed ?

Are BH and COSMOLOGIES
CLASSICAL ? Possibly, only
‘partially’ classical? Also,
what about macroscopic
guantum effects?

On entanglement?

?

Spacetime not
Fundamental

QM of Closed Systems:

Quantum spacetime
Quantum matter

Spacetime and
Histories

QM of Closed Systems:

Classical spacetime
Quantum matter

States on
spacelike surfaces
and their
unitary evolution

Approximate QM
of Measured
Subsystems

(textbook QM)

Quasiclassical realm,
measurements
as fundamental

Classical Physics

Determinism

Specific Systems:
stars, planets
biological species, etc

Specific
Regularities

20

Discarding
Excess
Baggage

Emergence




Solving dynamical equation for black holes, cosmologies, and waves,
described by relativistic gravity coupled to scalarons (treated as gauge “finite DOF’ systems).

*Quantizations of static states and Cosmoljgies (discrete gauge theories)  [intr. by DG, API, ATF]
(Constrained Dynamics).  ATF, Vitttorio de Alfaro and M.Cavaglia 1994 - 1997
esp.: gr-qc/9508062 (BH), gr-qc/9502062 (cosm)
*Gravity + scalaron integrable models unifying BH+Cosm+ S-gravity’ waves. Dynamical
‘portraits’. Search for 2-dim and 1-dim general exact solutions. 1996 - 2006
The first papers on integrability : hep-th/9605008, gr-qc/9612068 (ATF). S-C-W: h-t/060527, 0612258 (ATF+VdA)

*Multiexponential models (especially, integrable Toda-Liouville models describing  (ATF+VdA)
Black Holes+Cosmology+Waves) hep-th/09024445, 1302.6372,... 2006 - 2013
(On Toda models see A.Leznov and M.Saveliev; in QG see P.Fre and A.Sorin)

*Weyl-Eddington-Einstein (WEE) - inspired affine extension of gravity: GR+vecton.
Intrinsically non-isotropic cosmology. Reduction to scalaron. 2008 - 2014 (ATF)
0812.2616v3; 1003.0782; 1302.6372; 1403.6815; ...

*Fresh view of cosmology and of inflation by solving the standard cosmological dynamics
in an unusual formulation. Solving scalaron equations in case of curved space and anisotropy.
150601664v3; 1605,03948v2 2014 - 2016 (ATF)

*Lessons: use of different gauges, drawing ‘portraits’, clever choice of independent variables
*Plans: Inflation in WEE — inspired models. "S-gravity’ waves. Study of bouncing cosmologies?



The idea of the topological portrait e
of dilaton gravity model coupled to scalaron '

[

-1

DG coupled to a massless scalaron.

h is the LC metric, w — the dilaton
h>0 - cosmologies, h<0 — static states,
[h =0, w = 1] corresponds to horizon.

This portrait includes both static and cosmological solutions, and the most
important information is on the structure of horizons and of other ‘fixed points’
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This solution describes static states, cosmologies 3 0
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and waves, including soliton-like configurations. S : -
Similar results in the Toda-Liouville case.



Begin with the paper: ATF, arXiv:1506.01664 v.3

our arm s to spell out the mathematical structure
firstusing  differentiable maps V(o) and o)
which we call the PORTRAITS of COSMOLOGY

having in mind that the portraits may be more fundamental than solutions

Fundamental functions are: X (Cf) = di) / doe and i(t') = dao / d)

Gauge invariant  equation for \*(«) can be explicitly solved
if we formally replace v(v) by  v(a) =v(a)]

In this paper, the main goal is to derive the most general solutions of
general homogeneos isotropic models of the scalaron cosmologies.

The next paper 1605.03948 v.2 solves this problem for non-isotropic universes:
weak anisotropy (scalaron cosmology), essential anisotropy (vecton cosmology).


http://xxx.lanl.gov/abs/1506.01664

Spherical = perfect!? SEPARATE and further REDUCE !

4D spherically reduced metric: e2dr? + 27 d0%(0, ¢) — eV dt* + 2e*° drdt

Lagrangian in 2D €a+25_7(¢2 - 26’2 B 4664) _emat2B+y (¢12 B 26/2 . 4/6;,yf)

(duality of rand t ):
_ 25+ I. L0+
The momentum constraint: € V(y)+2ke

S . 1 .
—3' = BB +ap + py = 5 ) (to account for the drdt terms inthe metric)

a=ap(t)+ai(r), B=7p0(t)+pG(r), ~v=21t)+n(r). separationofrandt

If r.h.s. of Momentum Constraint = 0 we find simple separation conditions. 1. FLRW cosmology:

>> @ isotropic reduction isotropy condition 3-dimensional curvature

a=0, =0, B"+ke =0, 28+ 38" —ke ¥ = 3k

;2
—

LY = 6k — 2]V (V + 2A) — 277 (232 + 450 — 1b?)]

1_66_251 — k << homogeneity & isotropy condition

(Here must be k, without “bar’)



effective cosmological Lagrangian

ﬁ(Z) o Pgﬂ_ﬁ( o 6*'1’ ) E’Bﬂﬂrv(?ﬁ-ﬁb) — 6lke™ T

Y4 co=10. EC—E(SH} ( —6”) A ( ) Gke!”

He= 1" —6& + e 2 u(yh) + 6ke >+ = 0;
momentum - like variables 7, ¢ =1, a=¢
21 + 2(3+c)né + e 2V (W) =0

65 + (34 ¢) ?}2 + ce 2 v(y) + (14 )6k p—2(1+c)a

= ()



Equation for the

Hubble parameter 25 + 772 + 20 52 —+ 2]@6_2(1—'_6) R 0

H(o) = &(a)

Independence % 9 _ 2 _og
of Z on potential dov T = 0 ? L= g ke

t-reparametrizing dm = e “dt : d/dt = ¢ @ d/dT

Corresponding gauge _ _—ca = _ _—cw
e BeTE n=e"n, §=e "¢
transformations, Invariance

dy/dr =1,  2dp/dr + 67§ + v'(Y) =0,
da/dr = € 2dE/dr + 7* + 2ke ** =0.

H=e""H, =7 —6& +v[)+6ke " =0.



Simple examples from upside down standpoint
V=19 = DN = T7)o e}{p[—(:_)) -+ C)(_}} tc — de{/OK(OK)

66 e = vy + 6k e > + 15 e

when ¢ = =3 ¥ =1 (t — t{])
na e % = vy sinh?*[\/3/2n0 (t — to)]
Portrait: = vy sinh®(4/3/2)
K=0 exponential case, €=-3: V= 2}0(—29?‘/” v+ g — C{](t — IL{})
29) + eV () = 0, 2a — e vw) =0

e~ W6l — 925C 2 cosh?[v) + ga + Cylty — t1)/2)]



Integrable bi--Liouville

6+ g = [ U, g2 = 6/ g1

How to derive the potential in simple cases?
26417 + 2ke =0, 27+ 6n&+ VW) =0,

v()) =6& —n* —6ke >,

The first eqn. can be solvedif 1. & = Cp or 2. n = Cj.



When Cy =0 n=koe 7 (k= —2k)

Hubble function ar) ==&, alt) =& (T—T),

W= =1-2e xiasw,
portrait Y (w wo) = / (Oa) = —% e “

potential = 6¢2 + 262 (1) — 1) = v(¥))



Gauge-invariant equations for differentials of the map

Definiitions
(o) = d/da = gf;/c'k =n/¢, (W) =da/d = a/’en ={/n
i_r}i:fgd_{i_;ri i_drlu’ _;)rf
(lt oy oy ) }rh diy  di da = X( dn

dy : /
2£ =3 —¢&n) = (*-6)(x + [Inv@)]) +
+ 2k & EQH‘“(:{JrS[ln? (1) ])

equation for y(a) o) = [-e_,-i*(n;)] f’(ﬂa) = [Ino(a)]

dXQ 2k

— =(x"—6)(x"+ (o)) + &2 ()

f—?(l—kc}ﬁ' 2 35_1' ,.
- ¢ (X’ +30(a))




The Solution for k=0

XQ(@) =6 — ™ v(a) [C’o -+ / eﬁ“-ﬁ(a)]_]

() = vp exp(ga):

X* (@) =6—(g+06)[1+ Cre o]

Now it is possible to derive ¢)(«v) by integrating ¢'(a) = y(«)
along the ‘physical” paths
complex a-plane and thus to find the ‘portrait’

Once we know this expression we can reconstruct the full _ :
. . . do = Hdt
cosmology iusing the expression for the Hubble function H(t). *

H(a)=&()  (a) = e /X0, — 2k / e~ 20t 3 (@) ]



Equation for X(?)

Generally not integrable

dy . f
dv) r=/2/31, z2(z) =6 Y.

dz/dx = (2* — 1)(zu(z) + 1) u(zr) = dIn v /d

Asymptotic at large x

Y(U)/V6 = 2(x) = —[1 —e 20 p(2) ] [1 + e 20 p(2) ]! 4

—2
can be derived by the I —ece™
important Ansatz



1 —ce™
_— — — —t 1 <
z(x) = anh® y(x)

Then

that is the main equation in
psi version with which we can

dy/d.’lf = 1 — U(.’,U) taﬂhe (’(J) find asymptotic and power

series expansions for z(x)

Depends on the Logarithmic’ potential U((L’) — @,(CE)/Q ?7((17)

It is important that for positive,

‘inflationary’ potentials Z(x) can E = Sign(l — ZQ) — Sigll(—’U)
be large for large x.

Taking the popular ‘cosmological’ potential v(1)) = vy ¥* we find

the example of the asymptotic portrait

V6 a()) =g — 1+ Cy[l — (3 D2+ V60 + 1) exp(—\@ V) + ..



dn? .
dg +23+0)n* + e ¥V (a) =0 y(a) = e**
9 define
-+ 2062 4+ 1?4 2k e 29 — v(a) = e &2
O
In alpha picture we have two y'(a) + 6y(a) + 0'(a) =0
equations and one constraint Cl?’((l") + y((l") + 2k e =)
Qi-version. y(a) —6x(e) + v(a) + Gke™ =0

Exact solution y(a) = 6e / " () — o(a)

For this version the solution of the .. . .
is immediately derived

dynamics is trivial in isotropic case 05 (Oc")
with arbitrary k. Anisotropic case from the constraint

is more difficult, but for k=0 we

find explicit genera.I solgtlon. In If we know X —we trivially find the potential
general — perturb. in anisotropy.



I{c)

[C['] + /E’ﬁﬂf‘(&')]
(o) = e "I(a) + ke ™.

a=¢e “ T((P) = Exact result!
— 6_(14—(:)&15 [6—4(,151(@) i I8 }1/2
EXACT FORMULA for
any potential and curvature X2(04) = y(Oé)/.CE(Oé) —

6e ") — v(a)][e () + ke ]!



A fresh look at inflation

We begin with the standard conditions for inflation and the parameters accessible to
measurements. In our language the obvious necessary condition for inflation is y(¢) > 1
on a small interval of v, or, equivalently, \y*(a) < 1 on the corresponding large interval
(a; < o < ay), where ay — a; = N ~ 50 is the so-called number of e-foldings (see [3], [15]).
Using equations (11) and (63) with & = 0! we derive the exact relations

—2¢/€% = —'(a) Jx(a) = y(a)/z(a) = x*(a) = 2¢.

e e

w Jv(v) = yla)/v(a) 25(1—6/3)_1 ~ 3

In the standard approach to the inflationary cosmology one introduces one more "parameter’:

—2n/né = —y'(a)/y(a) =21 —¢),  71=x"(a) = X' (a)/x(a)

N N
6x(a) = G5 I(a) = Coe™® + 3 (=6) 70" (a) + (—6)~N+D—0 / gt )

0 0.

This is the crucial formula for our INFLATIONARY PERTURBATION THEORY



y(a) _ 6 r(a) = for the inflationary solution with
v() v(«) Cy =0

(o) =

) ()

= ;(_1)7167177(04)

1\ [ L= Do) .
(=S Y 2t =,
x

we find the perturbative X 1 _ X
expansion (by iterations) 6 6

do = Xd <<definitioins>> Do xv
— Z” _|_ Zf 2 _|_ d )
PN TNV b A LR ORI C Y

The corrections to the standard inflationary expression
o I(. 1 2 };n /2 _ 1(.| ln A
m——Hml—GU) LS 207+ (1)) p = V() |1+ 51"+ O

—dyxa = i+ (1/3)[21® 5 + (DB — (1))

Fan

oy =

l\..i ]



Our corrections to the number of e-foldings

N, = [¢?/4AN + Inv/3]% when v = vgp?N

Possible relation tothe 1) version: z(x) = —tanh® y(x)

dy/dr =1 —u(x) coth(y)  u(x) = #(x)/20(x) =z=V0xX. x=+/3/2¢

asymptotic expansion of y(x) in powers of 1/x ~ w(z) ~ I’ for v = vgr?V:
ymp P Y I 0

o0

—(2n+1 AT AT
y(@) = D g Ty =N = NP
0

u(z) =37 u, e y=> 7 yne "



In the recent paper 1605.03948v2 we derive the general gauge independent
solution for non-isotropic scalar cosmologies and applied our approacg to the
vector one, which is an approximation to the remake of the WEE affine gravity

The dynamics of any spherical cosmology with a scalar field coupling to gravity

is described by the nonlinear second-order differential equations for two metric
functions and the scalaron depending on the "time' parameter. The equations depend
on the scalaron potential and on the arbitrary gauge function that describes time
parameterizations. This dynamical system can be integrated for flat isotropic models only
with very special potentials. But, somewhat unexpectedly, replacing the time variable
by one of the metric functions allows us to completely integrate the general spherical
theory in any gauge and with apparently arbitrary potentials. The main restrictions on
the potential arise from positivity of the derived analytic expressions for the solutions,
which are essentially the squared canonical momenta. An interesting consequence is
emerging of classically forbidden regions for these analytic solutions. It is also shown
that in this rather general model the in inflationary solutions can be identifed, explicitly
derived, and compared to the standard approximate expressions. This approach can

be applied to intrinsically anisotropic models with a massive vector field (‘vecton')as
well as to some non-inflationary models.



The approximate cosmological Lagrangian can be written in the form (A = A.()):
L.=eP e VA% — e m2 A% — TV (V + 20) — 277 (282 + 4Bd — ¢%)] + 6k et
To write the equations of motion in a more compact form, we introduce the notation
3p=(a+2B3), 30=(f—0a). 3AL=e29(A2Em2 P A?), o) = V()+2A.
Then the exact Lagrangian for vecton-scalar cosmology is:
L. = (% =607 +66%) >+ —u() + 6ke™ + e TT3A_.
Here 7 is the Lagrangian multiplier, variations of which yield the energy constraint:

H,=10* —6p* +65°+ PV —6ke 2P 4134, = 0.

This and the following equations denoted by (S, V; k) generate 4 reduced systems: (S, 0; 0), (S, O; k),
(0, V; 0), (0, V; k). At the moment, the first 3 are well understood (but generally not integrable).

.

. . . J. “ , . . . 1 ~
matter 4+ (3p — )+ =2 (¢) = 0; A+ (p+46 —NA+em*A=0,

2
metric 40 + 6/’)2 o 4/’),'>/ o 6(’72 _|_ LD2 L 62’}- U(QL‘) - Qk 6—2(P+0'—"() + A_ :
aniso O‘- + So-p _ (j-r; — _ke—‘z(ro"'g—’}’) + A_:

tropy



G+ (B3p—F)o = ke 44
D+ (3= + e0(1)/2 = 0;
A+ (p+46—3)A+ e m’A=0,
P+ 367 — py + /2 = ke 200t (34, + A)/4

Introduce momenta and write the Hamiltonian, which defines the general WdW equation

(ppj p?vb? pg) — 263‘0_7(_6/@9 Qb? 60_) ) PA — 2€p+4g_rYA

1
o1 (6py,+ps —p.+6p3 e ) 7™ +u() e7F

F6ke TP LomPAZ ey TPt g



In A=0 case introduce the definitions similar to the isotropic case

(0, v, 0) =[&(p),nlp),Cp)] =
= [&(p), EW(p), o (p)] = L)1, x(p), wip)]

o dv dvdp

T dpd v'(p)= =v"(p)/x(p)

, §
V(1)) ;-

Define the gauge independent (invariant) functions

S(p) = [x(p), y(p), 2(p)] = exp (6p —27) [ (p), 7" (p), C(p)]

Most important! S(p) > 0



The gauge invariant equations in the general sclaron theory

y'(p)+V'p)—6V(p) =0, V=e"v(p)
z'(p) = V(p) = dke ™

2(p) =2k d'(p)

6z(p) = ylp) +V(p) + 62(p) + 6ke* ™

For large £’ we can first derive approximation for X and ) and then find (¥

Note that x, y, z must be positive that is not garanteed for the general solution



The exact general solution for y and the general expression for X are

y(p) = G(Cy+/V(p)) —Vip),  zlp)= (Cﬁ /V(p)> +4k/e4p20<»0>

The exact expression for z is 637([)) _ y(p) 4 V(p) 4 62([)) + 6k 64,0—20

obtained from the constraint

2 =x(p) 0’2(,0) =, + k [4 / edr—20(p) _ 64"2”(‘))]

= C, - C, +2k/ "(p)etr—20).
The conditions for positivity are

61(p) —V(p) >0,  I(p)+ke" >0 I(p) = / Vip)



1) k=0,0¢ =0, C, =0 —isotropic FLRW cosmology

2) k = 0,0 #0,C, # 0 anisotropic solution

becomes isotropic at large p, i.e. ¢ — 0 for p — o0

3) k £0,0 =0, C, =0 — isotropic cosmology, not of FLRW type
1)k #£0, 0 7& 0— general anisotropic solution: - can vanish at p — +oo.

Most general definition of INFLATION:

w? < 1 (small anisotropy) and y* < 1

x> =—l'(p)+ ol') = =x V' (W) /v(¥) + ...
X = V(@) v(W) + ... = =U'(¥) +o(l')



THE










SHORT SUMMARY

1. The cosmological dynamical equations are formulated in different gauges and versions.
We illustrate relations between them on simple solutions and by integrable models.

2. The general properties of gauge independent \-equations (26)-(27), describing the main
(e, 1)) portraits of isotropic cosmologies, are established in a and ¢ versions.

3. Equations (29)-(30) allow us to derive the complete solution if y(«) or Y(¢’) are known.
Taking into account equations (31) we can in addition derive o(«) or v(1)).

4. We discussed different u'auq to determine cosmologies not using potentz’ai s. A most natural
one seems to first derive y*(a) using (32). with the Hubble function £*() as an input.

5. Although the y-equations depend only on /(1)) /v(¢') and are thus insensitive to the sign
of v(v) = v(a), this sign is critically important for global properties of the solutions. From
(28), (44), (75) it follows that the solutions in the intervals with v(¢)) > 0 are isolated from
those in the intervals with v(¢’) < 0 and must be studied separately.

6. We mostly considered potentials not changing the sign and studied in detail models
with positive potentials for which inflationary scenarios are natural. We also can use and
actually used our solutions and their expansions near the points ¢9 where v(1yy) = 0 and
thus o'(¢)) /v(1)) behaves as (1) — 1)p)~! — £oo. This is a problem in the ¢-version because
(v? — 6) may change the sign with the potential, as follows from (44), (75). But in the
a-version it is no problem at all, as can be seen from from expression (62) for ().

New results: anysotropic case completely solved for k=0. In general, it is analytically
solved in case of small anisotropy. The result is completely gauge independent.



7. Probably, the most important results are presented in Section 4, where we have found the
exact solution of all equations for arbitrary ©(«) and k. The necessary condition for inflation
is Y2(a) < 6 (6y%(¢» > 1). To derive from y(a) standard inflationary scenarios we first
suppose that the spatial curvature vanishes. £ = 0. Then, by fixing the arbitrary integration
constant, Cy = 0. we preserve the v-scale invariance of inflationary solution y and derive its
expansion from Eq.(82) as a sum, the n-th term of which for n > 1 has the form:

2n
—I'(¢)) Z C (K1, oy kop) H[ (D)%, where Z ik =2n, k; > 0.
k i=1 i

This inflationary perturbation expansion can be obtained by the well-defined recursive alge-
braic iterations and gives higher-order corrections to the inflationary parameters €. 7, N, .
8. When v(1) < 0 and thus y*(a) > 6, 6v%(¢)) < 1, it is also convenient to use expansions
of Y(¢) when it is small or close to 1/6. In the last case we have derived asymptotic ap-
prozimation (54) for b — oo valid for a broad class of potentials v(v). We should mention
an interesting one-parameter class of ‘bouncing’ solutions (see (59) and (60)), which exist
when o'(v)/v(v)) ~ 1/1, and a special solution (56) that probably is a separatrix. The
global picture of solutions with such properties are of great interest for ekpyrotic-bouncing
scenarios and must be studied in future.

I believe that visualization of these structures, drawing the (v, 1) portraits, and using per-
turbative expansions for concrete inflationary. ekpyrotic, bouncing and other, more strange
1sotropic cosmologies may stimulate their better theoretical understanding.
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2.2 Simple examples from ‘upside-down’ standpoint . . . . .
. : : 2.2.1 Solutions of equations with exponential potentials
were introduced and discussed in the N : L PORE .
s o - 2.2.2 Note on independence from potentials. . . . . . .
work on “discrete strings’ ('86-96)... o . o . . :
ing ( ) 2.3 Equations for y(«a), Y(¢’) and their main properties
sauging (Superjcanon. symm 2.3.1 On what is the solution. . . . . . ... ... ...

The general gauge invarinace and g.f.

Generalization of Emden-Fowler eqn.: ¢ + 3 &) + V()/)2=0 v = at)? — P :

3 Dynamics in v-version
3.1 Main cosmological equations . . . . . . . ... oL
3.2 Exact and asymptotic solutions of Y(¢’)-equation . . . . . . . .. . .|
3.2.1 Solution with v(¢)) = vge?9% . . . . . ...
3.2.2  TImportant transformation of Y(¢) and properties of /() /v(1)) .
3.2.3  Large ) behavior of \(¢) . . . . . . ..o
3.2.4  Small v» behavior of Y(¢) . . . . . . ... L

Exact and approxim.
solutions '03-10
N-Liouville and Toda
systems (ATF, VdA)
BH-Cosm-Waves

4 Dynamics in a -version
4.1 Exact solution of y*(a)-equation for k=0 . . :
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A few remarks about non-isotropic and curved universes:
weak anisotropy (scalaron), and essential anisotropy (vecton). To be published soon.
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4-2000 BC. First astronomical observations in Egypt, Central America, England (Stonehenge)
260 BC. Greek Aristarchus of Samos (c. 315-230 BC) proposes a sun-centered universe.
c. 150 AD. Greek-Egyptian Ptolemy (2nd century AD) proposes an earth-centered universe.

1543. Copernicus publishes his sun-centered theory of the universe (solar system).

1576. English mathematician Thomas Digges (c. 1546—1595) proposes that
Universe infinite because stars are at varying distances
1576-1597. Tycho de Brahe’s most complete observations of stars positions.
1584. Italian philosopher Giordano Bruno (1548-1600) states that the Universe is infinite.

1609-1610. Galileo’s observations with his "telescope’. Kepler’s telescope with 2 lenses.

1632. Galileo champions Copernicus’s sun-centered universe, but is forced Inquisition to recant.
1666-1671. Newton constructs the first telescope - reflector...

1687, 1713, 1726 Newton’s "Principia’. 1729 edition with added “The Laws of the Moon's Motion,

according to Gravity” by John Machin
1705. Edmond Halley discovers the proper movements of stars.
1779-1784. F. W. Herschel (astronomer and composer) discovers binary and multiply stars
1845. William Parsons (Lord Ross) discovers spiral structure of some nebulae

Differential geometry: Gauss, Lobachevski; Riemann, Hemholtz; Beltrami, Levi-Civita, Ricci...

1912-1914. Vesto Slipher determines high velocities of 11 spiral nebulae fast fleeing away...



COSMOLOGICAL OBSERATIONS - THEORIES - PREDICTIONS - DISCOVERIES

1915-1916. Einstein‘s General Relativity (GR) (the final equations; the detailed review 20.03.16)
1917. Einstein proposes a closed static universe theory (the first relativistic cosmology)
Further predictions: Black Holes, Cosmological constant, Gravitational Waves...(the story ...)
1922. Alexander A. Friedmann : the expanding Universe solutions of Einstein’s equations
1923: Einstein: Extension of GR to affine geometry with additional vector field (DE and DM)
1927. G. Lemaitre proposes a detailed theory of the expanding Universe (using Slipher’s and
Hubble’s data). Earlier, he independently derived the Friedmann solutions (unpublished)
Mathematical work: Weyl, Cartan, O.Klein
1929. Edwin Hubble demonstrates (in fact) the expansion of the Universe (also with Sl.s dt.)
1937. Einstein and Nathan Rosen derived exact cylindrical gravitational waves
1946. George A. Gamov — the Hot Big-Bang theory, prediction of Relic photons at 3 K (CMB).
1965. Al. Penzias and Rob. Wilson — observation of bkg. radiation (rem. Dicke e.a.)
Now certainly discovered
Bcgr. Rad., Homogeneity and Isotropy of the Universe (with checking corrections); Black Holes,
Dark Energy, Dark Matter; the "Age’ and "Radius of the Universe.
Well established theoretical models

Realistic FLRW cosmological models (homogeneous, isotropic, based on GR+scalaron e.a) ...
Inflationary Models with possibility to confront them to observations (small amplitude GW).

Observed! Nonlinear Gravitational Waves! (visit tht seminar on March 22, A.F.Zakharov)

The problem of baryons in our Universe (abundance clarified, antibarions problem still-?)



