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Physics Department
Bielefeld University

Hadron Structure, Hadronic Matter, and Lattice QCD, Dubna 2017



Motivation: The sign problem

For example in Lattice QCD with µ > 0: S = SR + iSI ∈ C.

→ e−S∫
Γ

dUe−S
is no probability density anymore.

Possible solution: Use the phase quenched partition sum
Zpq =

∫
Γ

dUe−SR and reweight with the phase:

< O >=

∫
dUO(U)e−iSI [U ]e−SR[U ]∫

dUe−SR[U ]

∫
dUe−SR[U ]∫

dUe−iSI [U ]e−SR[U ]
=
< Oe−iSI >pq
< e−iSI >pq

How does < e−iSI >pq behave? Observe

< e−iSI >pq=
Z
Zpq

Zpq > Z ⇒ f − fpq = ∆f = − T
V log Z

Zpq
> 0.

⇒< e−iSI >pq= e−
V
T ∆f

Solution: Changing the integration contour to something that has no
sign problem.



The model: One flavor 0+1d-QCD

One space-time dimension: Fµν = 0 ⇒ SG = 0.
−→ S = SF and the discretized staggered fermion action reads:

ŜF (µ) =
1

2

Nτ−1∑
n=0

χ̄(n)
(
eµU(n)χ(n+ 1) − e−µU†(n− 1)χ(n− 1) + 2mχ(n)

)
Integrating out the fermion fields in the partition sum, we have

Z(Nτ , µ) =

∫
dUdχ̄dχe−χ̄M [U ]χ =

∫
dU detM [U ]

This determinant can be reduced to

det(M [U ]) =
1

23Nτ
det
(

2 cosh(Nτ sinh−1(m))I + eNτµP + e−NτµP †
)

P =

Nτ−1∏
n=0

U(n).

For µ > 0, this is complex.



The Monodromy theorem

Theorem

Let f : Γ̃→ C be a holomorphic function on Γ̃ and

Γ,Γ′ ⊂ Γ̃ be homotopic submanifolds of Γ̃ (Γ ' Γ′).

Then ∫
Γ

dzf(z) =

∫
Γ′

dzf(z).

If we have F : Γ→ Γ′, then we can express∫
Γ′

dzf(z) =

∫
Γ

dz det[dF ]f(z).

We take Γ = SU(3), whose complexification is Γ̃ = SL(3,C).
S can be analytically continued into SL(3,C) by replacing P † with P−1.



Steepest ascent equation

dωk
dt

=

(
∂S

∂ωk

)∗
, P (t) = exp

[
8∑
k=1

ωk(t)T k

]

SI [P (t)] = const., while SR is increased.
Induces Flow mapping for fixed t

Ft : SU(3) −→ Mt ⊂ SL(3,C)

P 7−→ P (t) = e
∑
k ωk(t)Tk .
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The Contraction algorithm

A. Alexandru et al., Phys. Rev. D93, arXiv 1510.03258

1 Select starting point P0 ∈ SU(3).

2 Pick Pn+1 ∈ SU(3) from an isotropic, ergodic distrib. around Pn
3 Calculate P̃n+1 = Ft(Pn+1) by integrating numerically (e.g. Runge

Kutta)

4 Parallel transport e1, . . . , e8 along Ft by integrating
dvk
dt =

(∑8
l=1

∂2S
∂ωk∂ωl

vl

)∗
, ⇒ det[dFt] = det[v1(t), . . . , v8(t)].

5 Calculate Seff = SR − log |det[dFt]|
6 Accept P̃n+1 with probability min{1, e−(Seff (P̃n+1)−Seff (P̃n))},

otherwise Pn+1 = Pn and repeat from 2.

⇒< O >=
< O det[dFt]

| det[dFt]|e
−iSI >Seff

< det[dFt]
| det[dFt]|e

−iSI >Seff



Comparison to Reweighting
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Figure: Scatterplot of sampled configurations for m = 0.1, µ = 0.35 and the
variations of SI for t = 1.5 and m = 1 compared with normal Reweighting.



Results for m=1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

<
χ-
 χ

>

µ

analytic, m=1
t = 1.5

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3

<
T

r 
P

>

µ

analytic, m=1
t = 1.5

Figure: Results for Nτ = 4,m = 1.0 using the effective action.

More sophisticated approach needed.



Lefschetz thimbles

F. Pham, Proc. Symp. in Pure Math. Vol. 40 319-333, 1983

Z =

∫
SU(3)

dPe−S

S has only non-degenerate crit. points:
∂S
∂ωk

(Pσ) = 0 ∀ k, det
[

∂2S
∂ωk∂ωl

]
(Pσ) 6= 0

⇒ Lefschetz thimbles

Jσ = {P ∈ SL(3,C) | Ft(P )
t→−∞−−−−→ Pσ}

S|Jσ = const.

⇒ SU(3) '
∑
σ

nσJσ

−→
∫

SU(3)

dPe−S =
∑
σ

nσe
−iSI [Pσ ]

∫
Jσ

dPe−SR



The geometric structure of 0+1d-QCD

C. Schmidt and F. Ziesché, Proc. LATTICE2016, arXiv 1701.08959

The critical points obtained are

Pσ = I, e±i 2π
3 I.

These are the center elements of SU(3). This is the original
integration domain, so they all have intersection number nσ = 1.

Including the divergent regions, where the thimbles end, we have:
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Which one contributes where... an approximation

The decomposition of the partition sum is

Z =

∫
SU(3)

dPe−S[P ] =

2∑
σ=0

∫
Jk

dPe−S[P ] :=

2∑
σ=0

Zσ

Zσ cannot be calculated directly by Monte Carlo. But at least, we want
to know how much each partition sum contributes.
→ We approximate S around its critical points to get an estimate
(Di Renzo, Eruzzi - Gaussian Approximation - see Lattice 2016):

S[P ] ≈ S[Pσ] +
1

2

∑
k,l

∂2S

∂ωk∂ωl

∣∣∣∣
Pσ

(ωk(P )− ωk(Pσ))(ωl(P )− ωl(Pσ))

⇒ Z ≈
2∑

σ=0

∫ 8∏
k=1

dωke
−S[Pσ ]− 1

2

∑
k

∂2S
∂ωk∂ωk

∣∣∣
Pσ
ω2
k



Which one contributes where... an approximation

We can now plot the ratio of |Z0| over the overall sum.
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Metropolis on LTs

A. Mukherjee, Phys. Rev. D88, arXiv 1308.0233
1 Choose Jσ with probability nσ∑

σ′ nσ′
.

2 Apply Steps 2 to 4 from Contraction algorithm with Pn ∈ TPσJσ
and (e1, . . . , e8) Basis of TPσJσ. (One can get these by solving the
Takagi eigeneq.)

3 Accept P̃n with probability min{1, e−(Seff (P̃n+1)−Seff (P̃n))} and
repeat from 1.

Flowtime tσ and proposal width dσ have to be tuned according to the
Thimble.
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Outlook

Improvement of Maryland Approach: Parallel Tempering (see e.g. A.
Alexandru et al. 1703.02414, M. Fukuma et al. 1703.00861)

higher-dimensional Lattice-QCD: Critical points → Gauge Orbits ⇒
Generalized Lefschetzt thimbles (see E. Witten 1001.2933)

Applications to other sign problems (e.g. Real-Time QCD)

Usage in continuum theory (Resurgence theory, instantons, ...)



The Hessian ∂2S

To calculate the Takagi vectors, which span the tangent space TPσJσ,
we need to calculate the Hessian

∂2S

∂ωk∂ωl
= Tr

[
M−1 ∂M

∂ωk
M−1 ∂M

∂ωl
−M−1 ∂2M

∂ωk∂ωl

]
.

... which is easy for P = eiγI

∂2S

∂ωk∂ωl
=

1

2

(
cosh(Nτµ+ iγ)

Bγ
− sinh2(Nτµ+ iγ)

B2
γ

)
δkl =: hγδ

kl

with
Bγ = cosh(Nτµc) + cosh(Nτµ+ iγ).

The Takagi equation reads

H∗ρ∗λ = λρλ, λ ∈ R

... with Hkl = hγδ
kl, we have as solutions

λ = |hγ |, ρkλ = cek with c =

√
h∗γ
|hγ |

.


