On generation of random ensembles of mixed states for quantum bipartite systems

Ilia Rogojin $^{\rm 1}$ and Arsen Khvedelidze $^{\rm 2,3}$

 ¹ Laboratory of Information Technologies, JINR, Dubna, Russia
 ² Institute of Quantum Physics and Engineering Technologies, GTU, Tbilisi, Georgia

³ A. Razmadze Mathematical Institute, TSU, Tbilisi, Georgia

MMCP - 2017 Dubna, July 3-7, 2017

I Rogojin & A.Khvedelidze (LIT JINR, IQ

Generating random states...

06.07.2017 1 / 31

Plan

THE GEOMETRY OF STATE SPACE

• A generic 2-qubit system

2 MODELING STATE SPACE

- Rank 3 states for 2-qubit system
- Rank 2 states for 2-qubit system
- Rank 1 states for 2-qubit system

SEPARABILITY vs. ENTANGLEMENT

• Definition and criterion of separability

4 Computing separability

- Generating random density matrices
- Results of computation

State space

- Observables Hermitian operators from the set of linear operators on a complex Hilbert space \mathcal{H} , (dim $\mathcal{H} = N$).
- State the density operator ϱ , a normalized linear operator on \mathcal{H} satisfying conditions:
 - self-adjoint: $\varrho = \varrho^+$,
 - 2 positive semi-definite: $\varrho \ge 0$,
 - **3** unit trace: $\operatorname{Tr} \varrho = 1$,
- State space the set \mathfrak{P}_+ of states.

State space for binary composites

PRINCIPLE OF SUPERPOSITION

• The Hilbert space $\mathcal{H}_{A\otimes B}$ for bipartite system composed from A and B subsystems is given by the tensor product of their Hilbert spaces $\mathcal{H}_{A}^{d_{A}}$ and $\mathcal{H}_{B}^{d_{B}}$:

$$\mathcal{H}_{A\otimes B}\sim \mathcal{H}_{A}^{d_{A}}\otimes \mathcal{H}_{B}^{d_{B}}$$
,

 $d_A = \dim \mathcal{H}_A^{d_A}, \quad d_B = \dim \mathcal{H}_B^{d_B}.$

• The density matrix of joint system ϱ acts on $\mathcal{H}_A \otimes \mathcal{H}_B$

Partial trace and reduced density matrices

Information on subsystems

- Information on subsystems of the H_{A⊗B} is accumulated in the reduced density matrices *ρ*_A and *ρ*_A:
- The partial trace of ρ with respect to the subsystem *B*, defines the reduced matrix ρ_A

$$\varrho_A = \operatorname{Tr}_B(\varrho) \; ,$$

• Similarly, the reduced matrix ρ_B is given by "partial tracing" the subsystem A

$$\varrho_B = \mathsf{Tr}_A(\varrho) \; ,$$

A generic 2-qubit state

• A generic 2-qubit density matrices admits the form

$$\varrho = rac{ZZ^{\dagger}}{\operatorname{Tr}\left(ZZ^{\dagger}
ight)}$$

where Z is an arbitrary complex 4×4 matrix

• Emphasising a composite structure of 2-qubit, the so-called Fano basis is often used

$$\varrho = \frac{1}{4} \left(\mathrm{I}_2 \otimes \mathrm{I}_2 + \vec{\boldsymbol{a}} \cdot \vec{\sigma} \otimes \mathrm{I}_2 + \mathrm{I}_2 \otimes \vec{\boldsymbol{b}} \cdot \vec{\sigma} + \boldsymbol{c_{ij}} \, \sigma_i \otimes \sigma_j \right) \,,$$

where \vec{a} and \vec{b} - are the Bloch vectors of the individual qubits and c_{ij} - correlation matrix

Block form of a generic 2-qubit state

• A generic 4 × 4 density matrix can be represented in the block form with 2 × 2 matrices A, B, C and D:

$$\varrho = \left(\frac{A \mid B}{C \mid D} \right)$$

• The corresponding reduced matrix ϱ_A reads

$$\varrho_A = \begin{pmatrix} \operatorname{tr}(A) & \operatorname{tr}(B) \\ \operatorname{tr}(C) & \operatorname{tr}(D) \end{pmatrix}$$

I Rogojin & A.Khvedelidze (LIT JINR, IQ

2-qubit rank 3 density matrices

• An arbitrary 4×4 complex rank 3 matrix Z can be written (up to permutation of entries by P_Z and Q_Z as

$$Z = P_Z \begin{pmatrix} & & & z_1 \\ A & & z_2 \\ & & & z_3 \\ \hline y_1 & y_2 & y_3 & D \end{pmatrix} Q_Z ,$$

where the complex number D is given by formula

$$D=YA^{-1}Z,$$

for any regular matrix A, 3-row $Y = (y_1, y_2, y_3)$ and 3-column $Z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix},$

06.07.2017 8 / 31

2-qubit rank 2 density matrices

• Any 4×4 complex rank 2 matrix can be written

$$Z = P_Z \begin{pmatrix} A & b_{11} & b_{12} \\ & b_{21} & b_{22} \\ \hline c_{11} & c_{12} & & \\ c_{21} & c_{22} & & & \end{pmatrix} Q_Z$$

the 2 × 2 complex matrix $D = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix}$ is given by product of 2 × 2 matrices C, A^{-1} and B,

$$D = C A^{-1} B$$

I Rogojin & A.Khvedelidze (LIT JINR, IQ

2-qubit rank 1 density matrices

 An arbitrary 4 × 4 complex rank 1 matrix Z can be written (up to permutation of entries by P_Z and Q_Z) as

$$Z = P_Z \begin{pmatrix} a & y_1 & y_2 & y_3 \\ z_1 & & & \\ z_2 & & D \\ z_3 & & & \end{pmatrix} Q_Z ,$$

where the 3×3 matrix **D** is given by formula

$$D = \frac{1}{a} \begin{pmatrix} z_1 y_1 & z_1 y_2 & z_1 y_3 \\ z_2 y_1 & z_2 y_2 & z_2 y_3 \\ z_3 y_1 & z_3 y_2 & z_3 y_3 \end{pmatrix}$$

Separable & Entangled density matrices

• A bipartite system is separable if

$$arrho = \sum_k oldsymbol{p}_k arrho_A^k \otimes arrho_B^k, \qquad \sum_k oldsymbol{p}_k = 1$$

• Otherwise the state is entangled .

The separability definition is implicit !

I Rogojin & A.Khvedelidze (LIT JINR, IQ

06.07.2017 11 / 31

Peres-Horodecki separability criterion

Introduce the partial transposition operation:

 $\varrho^{T_B} = I \otimes T \varrho, \quad T - \text{transposition operator}$

For the block matrix ϱ the partial transposition reads,

$$\varrho = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}, \qquad \varrho^{T_B} = \begin{pmatrix} A^T & B^T \\ \hline C^T & D^T \end{pmatrix}.$$

• The Peres-Horodecki separability criterion:

A binary $2 \otimes 2$ or $2 \otimes 3$ system is in a separable state if and only if the partial transposition of its density matrix gives again a positive-semidefinite operator.

Separability probability

• Inspired by the theory of geometric probability one can define the separability probability as

$$\mathcal{P}_{\rm sep} = \frac{\rm Vol \; Separable \; states}{\rm Vol \; All \; states}$$

- $\operatorname{Vol}_{All \ states} = \int_{\mathfrak{P}_+} \mathrm{d}\mu$, where \mathfrak{P}_+ is convex body of all states
- Vol Separable states = $\int_{\mathfrak{S}} d\mu$, where $\mathfrak{S} \in \mathfrak{P}_+$ is convex body of separable states
- The measure $d\mu$ is determined by the Riemannian distance on \mathfrak{P}_+ .

Ingredients: Convex bodies and Distances

For the evaluation of the separability probability we need:

- Determine the convex bodies \mathfrak{P}_+ and $\mathfrak{S} \in \mathfrak{P}_+$;
- Introduce the Riemannian distance on \mathfrak{P}_+ .

The bodies \mathfrak{P}_+ and \mathfrak{P}_+

 \mathfrak{S} and \mathfrak{P}_+ are semi-algebraic varieties given by the polynomial inequalities in elements of the density matrices.

The Riemannian distances used in our computations

• The Hilbert-Schmidt distance: $D_{\rm HS} = \sqrt{\operatorname{tr}(\varrho_1 - \varrho_2)^2}$,

• The Bures distance: $D_{
m B}=\sqrt{2(1-{
m tr}(\sqrt{arrho_1^{1/2}arrho_2arrho_1^{1/2}}))}$

< ロ > < 同 > < 回 > < 回 >

The method of computation

ALGORITHM for generation of density matrices

- Generate matrix G from Ginibre ensemble, i.e., the matrices whose entries real and imaginary parts are independent normal random variables;
- Write down the matrix $\rho_{\rm HS} = \frac{{\rm GG}^+}{{
 m tr}\,{
 m GG}^+}$.

 $\varrho_{\rm HS}$ is the Hilbert-Schmidt matrix.

• Test
$$\rho_{HS}$$
 on Peres–Horodecki P-H criterion
• $P_{sep} = \frac{\text{Number of positively PH-tested matrices}}{\text{Total number of matrices}}$

Separability probabilities for generic states

System	Separable	Entangled
HS-metric		
$2\otimes 2$	0.2424	0.7576
$2\otimes 3$	0.0270	0.9730
Bure metric		
$2\otimes 2$	0.0733	0.9267
$2\otimes 3$	0.0014	0.9986

• □ ▶ • • □ ▶ • □

Separability probabilities for rank 3, 2, and 1

- For rank 3 states: $\mathcal{P}_{sep}^{r=3} = 0.1652$
- For rank 2 states: $\mathcal{P}_{sep}^{r=2} = 0$
- For rank 1 states: $\mathcal{P}_{sep}^{r=1} = 0$

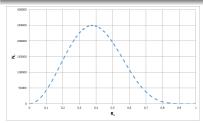
The latter two results are in accordance with the known statement:

If $rank(\varrho) < d_A = rank(\varrho_A)$, then ϱ is not separable.

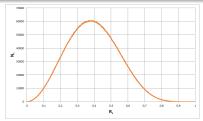
See e.g., M. Ruskai and E. M. Werner, Bipartite states of low rank are almost surely entangled, J.Phys.A.Math.Theo, 42 (2009) 095303

06.07.2017 17 / 31

The probabilistic characteristics of 2-qubit H-S ensemble



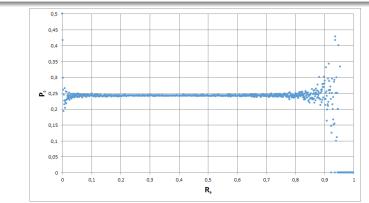
Number of the total density matrices in the Hilbert-Schmidt qubit-qubit ensemble as function of qubit Bloch vector



Number of the separable density matrices in the Hilbert-Schmidt qubit-qubit ensemble as function of qubit Bloch vector

< □ > < 同 >

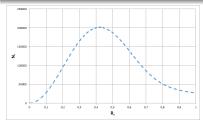
The probabilistic characteristics of 2-qubit H-S ensemble



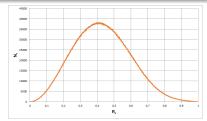
The separability probability in the Hilbert-Schmidt qubit-qubit ensemble as function of first qubit Bloch vector.

• □ ▶ • • □ ▶ • □

The probabilistic characteristics of rank 3 2-qubit states in Hilbert-Schmidt ensemble



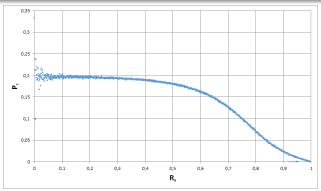
Number of the total density matrices in the Hilbert-Schmidt qubit-qubit rank 3 ensemble as function of qubit Bloch vector



Number of the separable density matrices in the Hilbert-Schmidt qubit-qubit rank 3 ensemble as function of qubit Bloch vector

< □ > < 同 >

The probabilistic characteristics of rank 3 2-qubit mixed states in Hilbert-Schmidt ensemble

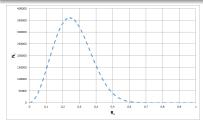


The separability probability for the rank 3 qubit-qubit states in Hilbert-Schmidt ensemble as function of first qubit Bloch vector.

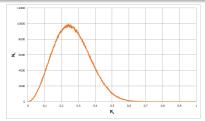
06.07.2017 21 / 31

イロト イポト イヨト イ

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble



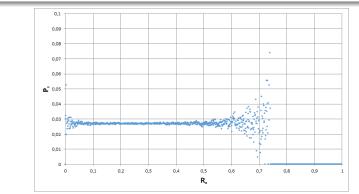
Number of the total density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector



Number of the separable density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector

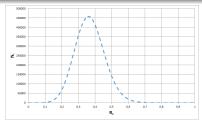
< □ > < 同 >

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

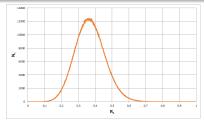


The separability probability in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector.

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble



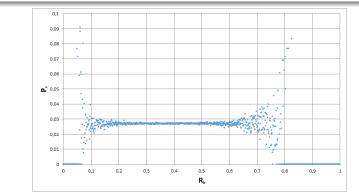
Number of the total density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector



Number of the separable density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector

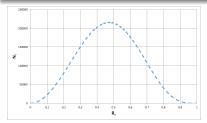
Image: Image:

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

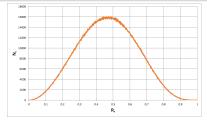


The separability probability in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector.

The probabilistic characteristics of 2-qubit Bures ensemble



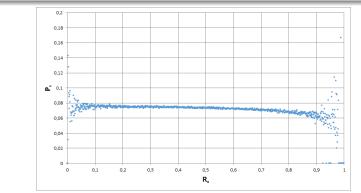
Number of the total density matrices in the Bures qubit-qubit ensemble as function of qubit Bloch vector



Number of the separable density matrices in the Bures qubit-qubit ensemble as function of qubit Bloch vector

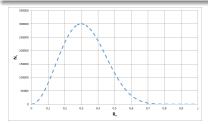
Image: Image:

The probabilistic characteristics of 2-qubit Bures ensemble

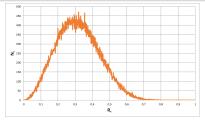


The separability probability in the Bures qubit-qubit ensemble as function of first qubit Bloch vector.

The probabilistic characteristics of qubit-qutrit Bures ensemble



Number of the total density matrices in the Bure qubit-qutrit ensemble as function of qubit Bloch vector



Number of the separable density matrices in the Bures qubit-qutrit ensemble as function of qubit Bloch vector

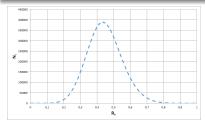
Image: Image:

The probabilistic characteristics of qubit-qutrit Bures ensemble

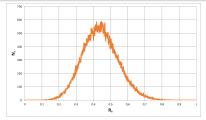


The separability probability in the Bures qubit-qutrit ensemble as function of qubit Bloch vector.

The probabilistic characteristics of qubit-qutrit Bures ensemble



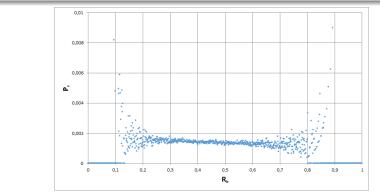
Number of the total density matrices in the Bures qubit-qutrit ensemble as function of qutrit Bloch vector



Number of the separable density matrices in the Bures qubit-qutrit ensemble as function of qutrit Bloch vector

Image: Image:

The probabilistic characteristics of qubit-qutrit Bures ensemble



The separability probability in the Bure qubit-qutrit ensemble as function of qutrit Bloch vector.