On generation of random ensembles of mixed states for quantum bipartite systems

Ilia Rogojin ${ }^{1}$ and Arsen Khvedelidze ${ }^{2,3}$

${ }^{1}$ Laboratory of Information Technologies, JINR, Dubna, Russia
${ }^{2}$ Institute of Quantum Physics and Engineering Technologies, GTU, Tbilisi, Georgia
${ }^{3}$ A. Razmadze Mathematical Institute, TSU, Tbilisi, Georgia

$$
\text { MMCP - } 2017
$$

Dubna, July 3-7, 2017
(1) THE GEOMETRY OF STATE SPACE

- A generic 2-qubit system
(2) MODELING STATE SPACE
- Rank 3 states for 2-qubit system
- Rank 2 states for 2-qubit system
- Rank 1 states for 2-qubit system
(3) SEPARABILITY vs. ENTANGLEMENT
- Definition and criterion of separability
(4) Computing separability
- Generating random density matrices
- Results of computation

State space

- Observables - Hermitian operators from the set of linear operators on a complex Hilbert space $\mathcal{H},(\operatorname{dim} \mathcal{H}=N)$.
- State - the density operator ϱ, a normalized linear operator on \mathcal{H} satisfying conditions:
(1) self-adjoint: $\varrho=\varrho^{+}$,
(2) positive semi-definite: $\varrho \geq 0$,
(3) unit trace: $\operatorname{Tr} \varrho=1$,
- State space - the set \mathfrak{P}_{+}of states.

State space for binary composites

PRINCIPLE OF SUPERPOSITION

- The Hilbert space $\mathcal{H}_{A \otimes B}$ for bipartite system composed from A and B subsystems is given by the tensor product of their Hilbert spaces $\mathcal{H}_{A}^{d_{A}}$ and $\mathcal{H}_{B}^{d_{B}}$:

$$
\mathcal{H}_{A \otimes B} \sim \mathcal{H}_{A}^{d_{A}} \otimes \mathcal{H}_{B}^{d_{B}}
$$

$d_{A}=\operatorname{dim} \mathcal{H}_{A}^{d_{A}}, \quad d_{B}=\operatorname{dim} \mathcal{H}_{B}^{d_{B}}$.

- The density matrix of joint system ϱ acts on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Partial trace and reduced density matrices

Information on subsystems

- Information on subsystems of the $\mathcal{H}_{A \otimes B}$ is accumulated in the reduced density matrices ϱ_{A} and ϱ_{A} :
- The partial trace of ϱ with respect to the subsystem B, defines the reduced matrix ϱ_{A}

$$
\varrho_{A}=\operatorname{Tr}_{B}(\varrho),
$$

- Similarly, the reduced matrix ϱ_{B} is given by "partial tracing" the subsystem A

$$
\varrho_{B}=\operatorname{Tr}_{A}(\varrho),
$$

A generic 2-qubit state

- A generic 2-qubit density matrices admits the form

$$
\varrho=\frac{Z Z^{\dagger}}{\operatorname{Tr}\left(Z Z^{\dagger}\right)}
$$

where Z is an arbitrary complex 4×4 matrix

- Emphasising a composite structure of 2-qubit, the so-called Fano basis is often used

$$
\varrho=\frac{1}{4}\left(\mathrm{I}_{2} \otimes \mathrm{I}_{2}+\vec{a} \cdot \vec{\sigma} \otimes \mathrm{I}_{2}+\mathrm{I}_{2} \otimes \vec{b} \cdot \vec{\sigma}+c_{i j} \sigma_{i} \otimes \sigma_{j}\right)
$$

where \vec{a} and \vec{b} - are the Bloch vectors of the individual qubits and $c_{i j}$ correlation matrix

Block form of a generic 2-qubit state

- A generic 4×4 density matrix can be represented in the block form with 2×2 matrices A, B, C and D :

$$
\varrho=\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)
$$

- The corresponding reduced matrix ϱ_{A} reads

$$
\varrho_{A}=\left(\begin{array}{cc}
\operatorname{tr}(A) & \operatorname{tr}(B) \\
\operatorname{tr}(C) & \operatorname{tr}(D)
\end{array}\right)
$$

2-qubit rank 3 density matrices

- An arbitrary 4×4 complex rank 3 matrix Z can be written (up to permutation of entries by P_{Z} and Q_{Z} as

$$
Z=P_{Z}\left(\begin{array}{ccc|c}
& & & z_{1} \\
& A & & z_{2} \\
& & & z_{3} \\
\hline y_{1} & y_{2} & y_{3} & D
\end{array}\right) Q_{Z}
$$

where the complex number D is given by formula

$$
D=Y A^{-1} Z
$$

for any regular matrix A, 3-row $Y=\left(y_{1}, y_{2}, y_{3}\right)$ and 3-column
$Z=\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right)$,

2-qubit rank 2 density matrices

- Any 4×4 complex rank 2 matrix can be written

$$
Z=P_{Z}\left(\right) Q_{Z}
$$

the 2×2 complex matrix $D=\left(\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right)$ is given by product of 2×2 matrices C, A^{-1} and B,

$$
D=C A^{-1} B
$$

2-qubit rank 1 density matrices

- An arbitrary 4×4 complex rank 1 matrix Z can be written (up to permutation of entries by P_{z} and Q_{z}) as

$$
Z=P_{Z}\left(\begin{array}{c|ccc}
a & y_{1} & y_{2} & y_{3} \\
\hline z_{1} & & & \\
z_{2} & & D & \\
z_{3} & & &
\end{array}\right) Q_{Z}
$$

where the 3×3 matrix D is given by formula

$$
D=\frac{1}{a}\left(\begin{array}{lll}
z_{1} y_{1} & z_{1} y_{2} & z_{1} y_{3} \\
z_{2} y_{1} & z_{2} y_{2} & z_{2} y_{3} \\
z_{3} y_{1} & z_{3} y_{2} & z_{3} y_{3}
\end{array}\right)
$$

Separable \& Entangled density matrices

- A bipartite system is separable if

$$
\varrho=\sum_{k} p_{k} \varrho_{A}^{k} \otimes \varrho_{B}^{k}, \quad \sum_{k} p_{k}=1 .
$$

- Otherwise the state is entangled.

The separability definition is implicit!

Peres-Horodecki separability criterion

Introduce the partial transposition operation:

$$
\varrho^{T_{B}}=I \otimes T \varrho, \quad T-\text { transposition operator }
$$

For the block matrix ϱ the partial transposition reads,

$$
\varrho=\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right), \quad \varrho^{T_{B}}=\left(\begin{array}{c|c}
A^{T} & B^{T} \\
\hline C^{T} & D^{T}
\end{array}\right) .
$$

- The Peres-Horodecki separability criterion:

A binary $2 \otimes 2$ or $2 \otimes 3$ system is in a separable state if and only if the partial transposition of its density matrix gives again a positive-semidefinite operator.

Separability probability

- Inspired by the theory of geometric probability one can define the separability probability as

$$
\mathcal{P}_{\text {sep }}=\frac{\mathrm{Vol}_{\text {Separable states }}}{\mathrm{Vol}_{\text {All states }}}
$$

- $\mathrm{Vol}_{\text {All states }}=\int_{\mathfrak{P}_{+}} \mathrm{d} \mu$, where \mathfrak{P}_{+}is convex body of all states
- $\mathrm{Vol}_{\text {Separable states }}=\int_{\mathfrak{S}} \mathrm{d} \mu$, where $\mathfrak{S} \in \mathfrak{P}_{+}$is convex body of separable states
- The measure $\mathrm{d} \mu$ is determined by the Riemannian distance on \mathfrak{P}_{+}.

Ingredients: Convex bodies and Distances

For the evaluation of the separability probability we need:

- Determine the convex bodies \mathfrak{P}_{+}and $\mathfrak{S} \in \mathfrak{P}_{+}$;
- Introduce the Riemannian distance on \mathfrak{P}_{+}.

The bodies \mathfrak{P}_{+}and \mathfrak{P}_{+}

\mathfrak{S} and \mathfrak{P}_{+}are semi-algebraic varieties given by the polynomial inequalities in elements of the density matrices.

The Riemannian distances used in our computations

- The Hilbert-Schmidt distance: $D_{\mathrm{HS}}=\sqrt{\operatorname{tr}\left(\varrho_{1}-\varrho_{2}\right)^{2}}$,
- The Bures distance: $D_{\mathrm{B}}=\sqrt{2\left(1-\operatorname{tr}\left(\sqrt{\varrho_{1}^{1 / 2} \varrho_{2} \varrho_{1}^{1 / 2}}\right)\right)}$

The method of computation

ALGORITHM for generation of density matrices

- Generate matrix G from Ginibre ensemble, i.e., the matrices whose entries real and imaginary parts are independent normal random variables;
- Write down the matrix $\quad \varrho_{\mathrm{HS}}=\frac{\mathrm{GG}^{+}}{\operatorname{tr} \mathrm{GG}^{+}}$. ϱ_{HS} is the Hilbert-Schmidt matrix.
- Test $\varrho_{\text {HS }}$ on Peres-Horodecki P-H criterion
- $\mathcal{P}_{\text {sep }}=\frac{\text { Number of positively PH-tested matrices }}{\text { Total number of matrices }}$.

Separability probabilities for generic states

System	Separable	Entangled
HS-metric		
$2 \otimes 2$	0.2424	0.7576
$2 \otimes 3$	0.0270	0.9730
Bure metric		
$2 \otimes 2$	0.0733	0.9267
$2 \otimes 3$	0.0014	0.9986

Separability probabilities for rank 3,2 , and 1

- For rank 3 states: $\mathcal{P}_{\text {sep }}^{r=3}=0.1652$
- For rank 2 states: $\mathcal{P}_{\text {sep }}^{r=2}=0$
- For rank 1 states: $\mathcal{P}_{\text {sep }}^{r=1}=0$

The latter two results are in accordance with the known statement:

If $\operatorname{rank}(\varrho)<d_{A}=\operatorname{rank}\left(\varrho_{A}\right)$, then ϱ is not separable.

See e.g., M. Ruskai and E. M. Werner, Bipartite states of low rank are almost surely entangled, J.Phys.A.Math.Theo, 42 (2009) 095303

Distribution of Separability of H-S ensemble

The probabilistic characteristics of 2-qubit H-S ensemble

Number of the total density matrices in the Hilbert-Schmidt qubit-qubit ensemble as function of qubit Bloch vector

Number of the separable density matrices in the Hilbert-Schmidt qubit-qubit ensemble as function of qubit Bloch vector

Distribution of Separability of H-S ensemble

The probabilistic characteristics of 2-qubit H-S ensemble

The separability probability in the Hilbert-Schmidt qubit-qubit ensemble as function of first qubit Bloch vector.

Distribution of Separability of H-S ensemble

The probabilistic characteristics of rank 3 2-qubit states in Hilbert-Schmidt ensemble

Number of the total density matrices in the Hilbert-Schmidt qubit-qubit rank 3 ensemble as function of qubit Bloch vector

Number of the separable density matrices in the Hilbert-Schmidt qubit-qubit rank 3 ensemble as function of qubit Bloch vector

Distribution of Separability of H-S ensemble

The probabilistic characteristics of rank 3 2-qubit mixed states in Hilbert-Schmidt ensemble

The separability probability for the rank 3 qubit-qubit states in Hilbert-Schmidt ensemble as function of first qubit Bloch vector.

Distribution of Separability of H-S ensemble

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

Number of the total density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector

Number of the separable density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector

Distribution of Separability of H-S ensemble

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

The separability probability in the Hilbert-Schmidt qubit-qutrit ensemble as function of qubit Bloch vector.

Distribution of Separability of H-S ensemble

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

Number of the total density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector

Number of the separable density matrices in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector

Distribution of Separability of H-S ensemble

The probabilistic characteristics of qubit-qutrit Hilbert-Schmidt ensemble

The separability probability in the Hilbert-Schmidt qubit-qutrit ensemble as function of qutrit Bloch vector.

Distribution of Separability of Bures ensemble

The probabilistic characteristics of 2-qubit Bures ensemble

Number of the total density matrices in the Bures qubit-qubit ensemble as function of qubit Bloch vector

Number of the separable density matrices in the Bures qubit-qubit ensemble as function of qubit Bloch vector

Distribution of Separability of Bures ensemble

The probabilistic characteristics of 2-qubit Bures ensemble

The separability probability in the Bures qubit-qubit ensemble as function of first qubit Bloch vector.

Distribution of Separability of Bures ensemble

The probabilistic characteristics of qubit-qutrit Bures ensemble

Number of the total density matrices in the Bure qubit-qutrit ensemble as function of qubit Bloch vector

Number of the separable density matrices in the Bures qubit-qutrit ensemble as function of qubit Bloch vector

Distribution of Separability of Bures ensemble

The probabilistic characteristics of qubit-qutrit Bures ensemble

The separability probability in the Bures qubit-qutrit ensemble as function of qubit Bloch vector.

Distribution of Separability of Bures ensemble

The probabilistic characteristics of qubit-qutrit Bures ensemble

Number of the total density matrices in the Bures qubit-qutrit ensemble as function of qutrit Bloch vector

Number of the separable density matrices in the Bures qubit-qutrit ensemble as function of qutrit Bloch vector

Distribution of Separability of Bures ensemble

The probabilistic characteristics of qubit-qutrit Bures ensemble

The separability probability in the Bure qubit-qutrit ensemble as function of qutrit Bloch vector.

