Modeling the quarks' helicity flipping stimulated by their confinement

Experiments
HERMES, CLASS, HALL A

Proton spin puzzle

A general state of $q-\bar{q}$ field:

Conservation of charge and polarization

$$
\psi=\left(\begin{array}{l}
q_{+} \\
q_{-} \\
\bar{q}_{+} \\
\bar{q}_{-}
\end{array}\right)
$$ at Lorentz transform:

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \rightarrow \text { Lorentz transform } \rightarrow \sqrt{\frac{E+m}{2 m}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p}{E+m}
\end{array}\right), \quad q_{+}{ }^{2}-{\overline{q_{-}}}^{2}=1
$$

Experiment EMC, Phys. Lett. B 206 (1988) 364

Totalcontribution of quark helicities to the proton spin is consistent with zero within the range of experimentalerrors

Explanation - only total angular momentum survives

$$
S_{z}+L_{z}=\text { const }
$$

L_{z} should be a conserved quantum number

This force us to introduce axial symmetry into consideration. According to the parton model, quarks are free particles. All that results in Dirac equation for free quarks in the cylindrical coordinates
(1)
$\left.i\left(\gamma^{r} \frac{\partial}{\partial r}+\gamma^{\varphi} \frac{\partial}{\partial \varphi}+\gamma^{z} \frac{\partial}{\partial z}\right)+\gamma^{0} E-m\right] \psi(r, \varphi, z ; E)=0$,

Gamma matrixes in cylindrical coordinates

$$
\begin{aligned}
& \gamma^{r}=\left(\begin{array}{cc}
0 & \sigma^{r} \\
-\sigma^{r} & 0
\end{array}\right), \gamma^{\varphi}=\left(\begin{array}{cc}
0 & \sigma^{\varphi} \\
-\sigma^{\varphi} & 0
\end{array}\right), \gamma^{z}=\left(\begin{array}{cc}
0 & \sigma^{z} \\
-\sigma^{z} & 0
\end{array}\right), \gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \\
& \sigma^{r}=\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right), \sigma^{\varphi}=\left(\begin{array}{cc}
0 & -i e^{-i \varphi} \\
i e^{i \varphi} & 0
\end{array}\right), \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The expressions for γ-matrices follows from their usual form (Bjorken, Drell. Relativistic Quantum Mechanics) and the vector nature of their change under coordinate transformations,

$$
\gamma^{s}=\gamma^{i} \partial x^{s} / \partial x^{i}
$$

Substitution

$(q(r, \varphi))$ separates wave functions of

$\psi=\binom{q(r, \varphi)}{\bar{q}(r, \varphi)}$
$e^{i p_{z} z}$ quarks and antiquarks and reduces the Dirac equation to a system of two ordinary differential equations

$$
\left\{\begin{array}{l}
(E-m) q+\left[i\left(\sigma^{r} \frac{\partial}{\partial r}+\frac{\sigma^{\varphi}}{r} \frac{\partial}{\partial \varphi}-\sigma^{z} p_{z}\right)\right] \bar{q}=0 \\
(E+m) \bar{q}+\left[i\left(\sigma^{r} \frac{\partial}{\partial r}+\frac{\sigma^{\varphi}}{r} \frac{\partial}{\partial \varphi}-\sigma^{z} p_{z}\right)\right] q=0
\end{array}\right.
$$

Transforms of Dirac equation (1)

1. Using the second equation of the system we express \bar{q} in terms of q and substitute it in the first one. Then we obtain

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right) q+p_{\perp}^{2} q=0
$$

2. Separation of variables by means of a substitution

$$
q(r, \varphi)=u(r) e^{i n \varphi}
$$

where n is an integer due to the single-valuedness of $q(r, \varphi)$, leads to the Bessel equation
$\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{n^{2}}{r^{2}} u+p_{\perp}^{2} u=0$,

Solution to Dirac equation (1)

Physically acceptable solutions of (2) describing quark distribution in the transverse plane is the Bessel functions of the first kind, $u(r)=$ Const $\cdot J_{n}\left(p_{\perp} r\right)$.
The corresponding wave function $q(r, \varphi)=u(r) e^{i n \varphi}$ of quarks are eigenstates of z-component of orbital momentum operator

$$
\hat{L}_{z}=-i \frac{\partial}{\partial \varphi}
$$

It gives a contribution to the total helicity of proton if

$$
n \neq 0
$$

(and thus can explain deficiency in proton spin composed only of quark helicities).

The problem

Bessel functions of the 1 st kind

The solutions are badly localized in the vicinity of $r=0$. Such a localization obviously contradicts to the requirement of quark confinement in the transverse plane.

Let us introduce the confinement potential

V(r), Gev

Dirac equation for q within $V(r)$

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+p_{\perp}^{2}\right) q(r, \varphi)- \tag{3}\\
& i \sigma^{r} \frac{d V / d r}{E-V+m}\left[i\left(\sigma^{r} \frac{\partial}{\partial r}+\frac{\sigma^{\varphi}}{r} \frac{\partial}{\partial \varphi}\right)-\sigma^{2} p_{z}\right] q(r, \varphi)=0 .
\end{align*}
$$

Compare with (2) Additional term

Key observation

Equation (3) contains a term proportional to

$$
\sigma^{r} \sigma^{z}=-i \sigma^{\varphi} .
$$

It destroys the initial polarizations of quarks,

$$
-i \sigma^{\varphi}\binom{1}{0}=\binom{0}{e^{i \varphi_{\&}}}, \quad \text { Helicity }+1 / 2, \text { orbital momentum } 0
$$

leaving the total angular momentum, $1 / 2$, conserved:
$\left(S_{z}+L_{z}\right) q=\frac{1}{2} q,\left(S_{z}+L_{z}\right) q^{\prime}=\frac{1}{2} q^{\prime}, q^{\prime}=-i \sigma^{\varphi} q$.
Confinement potential may change the initial felicity of quarks with simultaneous change of their orbital angular momentum!

Instead of the Bessel equation, 1

 Separation of variables may be performed now by a substitution$$
q(r, \varphi)=\binom{u_{+}(r) e^{i n \varphi}}{-i u_{-}(r) e^{i(n+1) \varphi}}
$$

Restricting yourself with the case $n=0$, which indicates that there are no the orbital excitations in the region of the asymptotic freedom and all of them appear only due to the confinement force, we arrive to the following system of differential equations for the wave functions of quarks with positive and negative helicities:

Instead of the Bessel equation, 2

$$
\left\{\begin{array}{c}
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+p_{\perp}^{2}\right) u_{+}(r)- \\
\frac{d V / d r}{E-V+m}\left[\frac{\partial u_{+}(r)}{\partial r}+p_{z} u_{-}(r)\right]=0 \tag{4}\\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+p_{\perp}^{2}-\frac{1}{r^{2}}\right) u_{-}(r)- \\
\frac{d V / d r}{E-V+m}\left[\left(\frac{\partial}{\partial r}+\frac{1}{r}\right) u_{-}(r)+p_{z} u_{+}(r)\right]=0
\end{array}\right.
$$

Cauchy problem for eq.(4)

Initial conditions,

$$
\begin{aligned}
& u_{+}(r)=\left.J_{0}\left(p_{\perp} r\right)\right|_{r=0.7}, u_{+}^{\prime}(r)=\left.J_{0}^{\prime}\left(p_{\perp} r\right)\right|_{r=0.7} \\
& u_{-}(r)=\left.0\right|_{r=0.7}, u_{-}^{\prime}(r)=\left.0\right|_{r=0.7}
\end{aligned}
$$

suppose that quarks are free at $r<0.7 \mathrm{fm}$ and therefore are described by the Bessel functions of the 1st kind (see solution of (1)) and that a contribution of negative helicity is negligible there. Now a solution of the Cauchy problem in the transverse plane, which corresponds to (4), may be found numerically.

Confusing surprise

MAPLE assisted Runge-Kutta-Fehlberg algorithm (rkf45 proc.) finds a solution inconsistent with the confinement condition

RKF-solution for simplified version of linear confinement potential with string tension $1 \mathrm{GeV} / \mathrm{fm}$ defined for $0.1<\mathrm{r}<1.4 \mathrm{fm}$.

Numerical solutions consistent with confinement

Ladder-shaped confinement potential:

$$
\left\{\begin{align*}
\frac{\partial^{2} u_{+}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{+}}{\partial r}+p_{\perp}^{2} u_{+} & =\frac{d V / d r}{E-V(r)+m} \delta\left(r-r_{i}\right)\left(\frac{\partial u_{+}}{\partial r}+p_{z} u_{-}\right) \tag{6}\\
\frac{\partial^{2} u_{-}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{-}}{\partial r}-\frac{1}{r^{2}} u_{-}+p_{\perp}^{2} u_{-} & =\frac{d V / d r}{E-V(r)+m} \delta\left(r-r_{i}\right)\left(\frac{\partial u_{-}}{\partial r}+\frac{u_{-}}{r}+p_{z} u_{+}\right)
\end{align*}\right.
$$

where $\quad d V / d r=\Delta V_{i} \times \delta\left(r-r_{i}\right)$.
Everywhere, apart from points r_{i} of $V(r)$ breaking, system (6) has form of the
Bessel equations:

$$
\left\{\begin{array}{c}
\frac{\partial^{2} u_{+}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{+}}{\partial r}+p_{\perp}^{2} u_{+}=0 \tag{7}\\
\frac{\partial^{2} u_{-}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{-}}{\partial r}-\frac{1}{r^{2}} u_{-}+p_{\perp}^{2} u_{-}=0
\end{array}\right.
$$

Solutions to the Bessel equations (7)

Solutions for $p_{\perp}^{2}>0: \quad u_{+}(r)=A_{1} J_{0}\left(p_{\perp} r\right)+A_{2} Y_{0}\left(p_{\perp} r\right)$,

$$
\begin{equation*}
u_{-}(r)=B_{1} J_{1}\left(p_{\perp} r\right)+B_{2} Y_{1}\left(p_{\perp} r\right), \tag{8}
\end{equation*}
$$

where J_{i}, Y_{i} are Bessel functions of the 1st and 2nd kind ($Y_{i} \equiv$ Neumann functions).
And for $p_{\perp}^{2}<0: u_{+}(r)=C_{1} I_{0}\left(\left|p_{\perp}\right| r\right)+C_{2} K_{0}\left(\left|p_{\perp}\right| r\right)$,

$$
u_{-}(r)=D_{1} I_{1}\left(\left|p_{\perp}\right| r\right)+D_{2} K_{1}\left(\left|p_{\perp}\right| r\right)
$$

where I_{i}, K_{i} are modified Bessel functions of the 1 st and 2 nd kind. The idea of our numerical solution: to join the Bessel functions imposing some conditions following from eqs. (6) at points r_{i} where $V(r)$ undergoes an abrupt change.

The "insuperable" difficulties

In the classically forbiden region, where $p_{\perp}^{2}<0$, functions $I_{0}\left(\left|p_{\perp}(r)\right| r\right)$ and $I_{1}\left(\left|p_{\perp}(r)\right| r\right)$ rapidly increase at moving off the boundary $r=r_{\text {bound }}$ of the classically permissible region. Therefore the only solutions consistent with confinement at far distances from the boundary are $K_{0}\left(\left|p_{\perp}(r)\right| r\right)$ and $K_{1}\left(\left|p_{\perp}(r)\right| r\right)$, where they rapidly vanish.

But these function possess the infinite value at the boundary, where $p_{\perp}(r)=0$, because $K_{0}\left(p_{\perp} r\right), K_{1}\left(p_{\perp} r\right) \rightarrow \infty$ when $p_{\perp} r \rightarrow 0$. Thus, at first sight, it is impossible to describe confinement of quarks using generally accepted potential for it.
Analogous problem arise in the classically permissible region at $p_{\perp}^{2} \rightarrow 0$, because $Y_{0}\left(p_{\perp} r\right), Y_{1}\left(p_{\perp} r\right) \rightarrow \infty$ in this limit.

We shall see that the problem has a solution
based on an unexpected property of system (6).

Matching conditions at points

 where $V(r)$ undergoes an abrupt change are$$
\left\{\begin{array}{c}
\frac{\partial^{2} u_{+}}{\partial r^{2}}=\frac{\Delta V}{E-V(r)+m} \delta\left(r-r_{i}\right)\left(\frac{\partial u_{+}}{\partial r}+p_{z} u_{-}\right) \\
\frac{\partial^{2} u_{-}}{\partial r^{2}}=\frac{\Delta V}{E-V(r)+m} \delta\left(r-r_{i}\right)\left(\frac{\partial u_{-}}{\partial r}+\frac{u_{-}}{r}+p_{z} u_{+}\right)
\end{array}\right.
$$

They follow from (6), as far as contribution of all finite terms in (6) may be neglected at $r=r_{i}$.

Matching conditions

Integration of equations (10) gives the matching conditions for solutions of Bessel equations at points r_{i} of the potential discontinuities:

$$
\begin{aligned}
\Delta u_{+}^{\prime}\left(r_{i+\varepsilon}\right) & =\frac{\Delta V}{E-V\left(r_{i-\varepsilon}\right)+m}\left(u_{+}^{\prime}\left(r_{i-\varepsilon}\right)+p_{z} u_{-}\left(r_{i-\varepsilon}\right)\right), \\
\Delta u_{-}^{\prime}\left(r_{i+\varepsilon}\right) & =\frac{\Delta V}{E-V\left(r_{i-\varepsilon}\right)+m}\left(u_{-}^{\prime}\left(r_{i-\varepsilon}\right)+\frac{u_{-}\left(r_{i-\varepsilon}\right)}{r_{i-\varepsilon}}+p_{z} u_{+}\left(r_{i-\varepsilon}\right)\right),
\end{aligned}
$$

where $u^{\prime}=d u / d r$ and $\Delta u_{+}^{\prime}, \Delta u_{-}^{\prime} \quad$ describe discontinuities of the first derivatives at $r=r_{i}$. We take $\varepsilon=1$, that is matching conditions (11) are used as recurrence relations for calculations of jumps of u_{+}^{\prime} and u_{-}^{\prime} at mesh points in our finite-difference scheme.

Matching conditions

See (8):

If all $A_{i}, B_{i} \neq 0$, we may impose additional conditions of continuity of our solutions U_{+}and U_{-}at $r=r_{i}$. Then we have 4 equations, (11) and the requirements of continuity, for determination of 4 coefficients A_{i}, B_{i}.

If one of the coefficients A_{i} and one of B_{i} are equal to zero the functions U_{+}and U_{-}itself should undergo breaks at $r=r_{i}$. In this case we have only two equations (11) for determinations of 2 nonzero coefficients A_{i}, B_{i}.

See (9):
The same prescription should be applied to the coefficients C_{i} and D_{i}.

Overcoming the stopping point of classical motion

Amplitude of positive helicity

Amplitude of negative helicity

Matching conditions use 4 equations for determinations of 4 nonzero coefficients. Similar solutions may be found for the Cauchy problem within the classically inaccessible region. A negative feedback between u_{+}and u_{-} forces them to be constant! The same is true for $r>r_{\text {stop }}$.

Solutions for classically accessible region

Matching conditions use 2 equations (11) for determinations of 2 nonzero coefficients.

\sim Probability density of negative helicity

Confinement potential cannot stimulate significantly quark helicity flipping in the classically accessible region (CAR).

Solutions for classically inaccessible region - long jump

Matching conditions use 2 equations (11) for determinations of 2 nonzero coefficients. The initial data for the Cauchy problem are taken as continuation from of the solution in the classically accessible region according to the explanation in page 22. The distance of the continuation is $\Delta r=0.0178 \mathrm{fm}$.
\sim Probability density of positive helicity

\sim Probability density of negative helicity
 r, fm

Confinement potential can stimulate strongly quark helicity flipping in the classically inaccessible region ($\mathrm{P}_{\left.\mathrm{L}^{2}<0\right) .}$

Solutions for classically inaccessible region - short jump

The distance of continuation is $\Delta r=0.0002 \mathrm{fm}$.

Confinement potential can stimulate very strongly quark helicity flipping in the classically inaccessible region for a short distance of continuation from CAR.

Estimation of depolarization values

Probabilities of different helicities in the classically inaccessible region:

$$
\begin{gathered}
P_{ \pm}=2 \pi N \int_{r_{0}>R_{\text {stop }}}^{\infty} u_{ \pm}^{2}(r) r d r, N=\left(2 \pi \int_{r_{0}>R_{\text {stop }}}^{\infty}\left(u_{+}^{2}(r)+u_{-}^{2}(r)\right) r d r\right)^{-1} \\
\text { Polarization }=\frac{P_{+}-P_{-}}{P_{+}+P_{-}}=\left\{\begin{array}{l}
-0.0144 \text { long jump } \Delta r \\
-.71587 \text { short jump } \Delta r
\end{array}\right.
\end{gathered}
$$

Conclusion: average polarisation of valence quark depends on unknown value of distance Δr, where regime $u_{+}(r), u_{-}(r)=$ const is realized. It may be near zero for the true choice of this value.

Thank you for your attention!

