Advances
In classical gravity Il

Interacting massless
particles

Dmitry Gal’'tsov

Moscow State University

"Cosmology, Strings, New Physics"
BLTP, JINR, 07 September 2016


https://www.google.ru/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjl5tnzlsTNAhWIvJAKHb40DNcQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAstrophysical_jet&psig=AFQjCNHOZQZYXzWOmy22ulZHgGWWos_Ngg&ust=1466978497117295&cad=rjt
https://www.google.ru/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http%3A%2F%2Fwww.astb.se%2Fcassiopeiabloggen%2F%3Fm%3D201110%26paged%3D3&psig=AFQjCNHOZQZYXzWOmy22ulZHgGWWos_Ngg&ust=1466978497117295

Contents

Infrared photons and gravitons (Weinberg “65)
Gravitational memory (Zeldovich-Polnarev "74)
Electromagnetic memory

BMS asymptotic symmetry explains Weinberg's result
(Strominger "13...)

Soft hair on black holes (Hawking, Perry, Strominger "16...)

Is QED with massless charges non-contradictoty?

Do massless particles radiate?

Quantum synchrotron radiation from massless charges (DG, 2015)
Gravitational synchrotron radiation from massless particles

Do pointlike massless particles move

along null geodesics?



Weinberg 1965
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Emission of graviton in the 2-> 2 particle scattering. In the infrared k = 0 limit
the diagrams with emission from external legs (1-4) have IR divergence, since
the particle propagator sits at a pole:
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while the last diagram (bulk emission) remains finite. The total amplitude is
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Extended soft factorization (Cachazo and Strominger)
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where .J!'Y are angular momenta
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where the external leg emission diagrams (with different couplings) give
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Thus all coupling constants in the IR (classical) limit should be equal.
This is nothing but the universality of gravitational interaction. Note that
one of legs may be graviton itself, then this proves self-interaction



Similar considerations for emission of the spin three particle (trird rank
symmetric tensor) lead to the identity
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Together with the conservation of the momentum this implies vanishing
of interaction in the classical limit
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Note that in quantum theory interaction of spins starting from 3
Involves in full tower of higher spins.

Finally, recall that Weinberg’s argument for electromagnetic interaction

leads to A
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which is just the conservation law for the electric charge



Gravitational memory (displacement)

Two particles in a free fall in gravitational field of
a distant source of gravitational waves are
relatively displaced via deviation equation:

where D is the initial distance between particles,
R is the curvature tensor of the wave. Assuming

wave generation via quadrupole formula, we get:

where P is projection orthogonal to the radial
direction (and substraction of the trace part)

For the system of point particles

Combining all this and integrating we get
(Zeldovich and Polnarev 1974)
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Thus test particles memorize their displacement after the wave passed.
Relation to Weinberg theorem is obvious. Non-linear - Christodoulou ‘91



Electromagnetic memory (velocity)

Consider similar system of charges

d*T s
For test charges we have mﬁ = qE  sothe relative velocity will
be AU = 2/ Edt . In non-relativistic case i _ EP {d ] where
m.J— 2
p is the dipole moment of the source. It follows that dt
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Like in the previous case, consider largely separated charges asymptotically free
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Combining, we get the velocity kick (Bieri and Garfinkle 2013)
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Soft theorems from BMS (Strominger, ...)

Future null infinity ds® =

where w =t —7r and
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This is the leading asymptotic for AF solutions.
BMS* transformations combine conformal

transformations of the sphere with

adjusting transformations of remaining

coordinates leaving asymptotic expansions valid.
Similarly, BMS™ transformations act on

past null infinity. Certain subgroup of

BMS*x BMS™ is the symmetry of S-matrix.

It generates Ward identity which reproduces

soft photon and graviton theorems
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SOFT HAIR ON BrLAcK HOLES

Stephen W. Hawking’, Malcolm J. Perry! and Andrew Strominger*

05 January 2016

We have reconsidered the black hole information paradox in light of recent insights into the
infrared structure of quantum gravity. An explicit description has been given of a few of
the pixels 1n the holographic plate at the future boundary of the horizon. Some information
1s accessibly stored on these pixels in the form of soft photons and gravitons. A complete
description of the holographic plate and resolution of the information paradox remains an

open challenge, which we have presented new and concrete tools to address.

1601.00921 Phys. Rev.Lett. 116 no. 23, (2016) 231301,

To date this paper has 69 citations, the recent one is arXiv 1609.01056, contains review
Horizon Supertranslation and Degenerate Black Hole Solution

Rong-Gen Cail'? ¥ Shan-Ming Ruan' I Yun-Long Zhang® *



Gravitational Black Hole Hair from
Event Horizon Supertranslations

Artem Averin®P, Gia Dvali®P¢, Cesar Gomez?, Dieter Liist®P

January 15, 2016

We discuss BMS supertranslations both at null-infinity BMS™ and on the
horizon BM S™ for the case of the Schwarzschild black hole. We show that
both kinds of supertranslations lead to infinetly many gapless physical exci-
tations. On this basis we construct a quotient algebra A = BMSH" /BMS—
using suited superpositions of both kinds of transformations which cannot
be compensated by an ordinary BMS-supertranslation and therefore are in-
trinsically due to the presence of an event horizon. We show that transfor-
mations in A are physical and generate gapless excitations on the horizon
that can account for the gravitational hair as well as for the black hole en-
tropy. We identify the physics of these modes as associated with Bogolioubov-
Goldstone modes due to quantum criticality. Classically the number of these
gapless modes is infinite. However, we show that due to quantum criticality
the actual amount of information-carriers becomes finite and consistent with
Bekenstein entropy. Although we only consider the case of Schwarzschild
geometry, the arguments are extendable to arbitrary space-times containing
event horizons.



Goldstone origin of black hole hair from
supertranslations and criticality

Artem Averin®P, Gia Dvali®*?¢, Cesar GomezY, Dieter Liist®"

June 21, 2016

Degrees of freedom that carry black hole entropy and hair can be described
in the language of Goldstone phenomenon. They represent the pseudo-
Goldstone bosons of certain supertranslations, called A-transformations, that
are spontaneously broken by the black hole metric. This breaking gives rise to
a tower of Goldstone bosons created by the spontaneously-broken generators
that can be labeled by spherical harmonics. Classically, the number of charges
is infinite, they have vanishing VEVs and the corresponding Goldstone modes
are gapless. The resulting hair and entropy are infinite, but unresolvable. In
quantum theory the two things happen. The number of legitimate Goldstone
modes restricted by requirement of weak-coupling, becomes finite and scales
as black hole area in Planck units. The Goldstones generate a tiny gap, con-
trolled by their gravitational coupling. The gap turns out to be equal to
the inverse of black hole half-life, tgy. Correspondingly, in quantum theory
the charges are neither conserved nor vanish, but non-conservation time is
set by tpy. This picture nicely matches with the idea of a black hole as
of critical system composed of many soft gravitons. The A-Goldstones of
geometric picture represent the near-gapless Bogoliubov-Goldstone modes of
critical soft-graviton system.



Near Horizon Soft Hairs as Microstates of Three Dimensional Black Holes

H. Afshar,!** D. Grumiller,® T and M.M. Sheikh-Jabbari':*

We revisit the three dimensional Banados—Teitelboim—Zanelli (BTZ) black holes in Einstein grav-
ity with negative cosmological constant and the algebra of charges associated with nontrivial dif-
feomorphisms around their near horizon geometry (the near horizon “soft hair”). These soft hairs
are arranged by the near horizon algebra which is the algebra of creation/annihilation operators of
a two dimensional free boson theory. We show that the asymptotic conformal algebra is a specific
subalgebra of the near horizon algebra. We propose that microstates of a generic BTZ black hole
of a given mass and angular momentum, in a microcanonical description, are generic states in the
Hilbert space of this near horizon algebra for which asymptotic Virasoro generators vanish. That
is, microstates of a given BTZ black hole are not distinguishable by the asymptotic two dimensional
conformal algebra. We count the microstates using the Hardy—-Ramanujan formula for the number of
partitions of a given integer into non-negative integers, recovering the Bekenstein—-Hawking entropy
of the BTZ black hole. We discuss possible extensions of our black hole microstate construction to
astrophysical Kerr-type black holes.

arXiv: 1607.00009



Massless fields interacting with
massless particles: consistent theory?

Photons, neutrino, gravitons in GR +

Gluons in QCD +
Massless charges (MC) in QED -?
Collinear divergences +
Charge screening -+
e(#4) >0 inthe IR -+

But: classical motion in external field
Massless QED in external magnetic field
MC exists, but unobservable: do not radiate
Radiation from massless particles in GR

D NN+t



Massless charges in electrodynamics

« Whether Minkowski space QED with massless charged particles is
non-contradictory? (Waks, Gribov, Smilga...)

« Can classical ED describe radiation from massless charges?

 Are ultrarelativistic limit and massless limit for radiating particle
identical?

« Whether quantum radiation power from massless charge have
classical limit?

DG, Synchrotron radiation from massless charge, Physics Letters B 747,
400 (2015)

DG, Electromagnetic and gravitational radiation from massless particles,
arxiv:1512.06826



Do massless particles radiate?
JOURNAL OF MATHEMATICAL PHYSICS 36, 022901 (2015)

Electrodynamics of massless charged particles
Kurt Lechner®

We derive the classical dynamics of massless charged particles in a rigorous way
from first principles. Since due to ultraviolet divergences this dynamics does not
follow from an action principle, we rely on (a) Maxwell’s equations, (b) Lorentz-
and reparameterization-invariance, and (c) local conservation of energy and mo-
mentum. Despite the presence of pronounced singularities of the electromagnetic
field along Dirac-like strings, we give a constructive proof of the existence of a unique
distribution-valued energy-momentum tensor. Its conservation requires the particles
to obey standard Lorentz equations and they experience, hence, no radiation reaction.
Correspondingly, the dynamics of interacting classical massless charged particles can
be consistently defined, although they do not emit bremsstrahlung end experience no
self-interaction. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906813]

B P Kosyakov Massless interacting particles  Phys. A: Math. Theor. 41 (2008) 465401

We show that classical electrodynamics of massless charged particles and the
Yang—Mills theory of massless quarks do not experience rearranging their initial
degrees of freedom into dressed particles and radiation. Massless particles
do not radiate. We propose a conformally invariant version of the direct
interparticle action theory for these systems.



Larmor formula for radiation in classical ED In
the massless limit

Power emitted by a classical charge in magnetic field

2erH? (BN
Py = a0\
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diverges as m->0
Is this formula applicable to a «true» massless charge?

Lienard-Wiechert potential has singularity along the line parallel to

the velocity oyl

AP =
R(1 — cos6)

ret

reminiscent to collinear singularities in QFT.
Radical claims (Kosyakov, Lechner): NO RADIATION

BUT: spectral decomposition is correct,
Schott is still right!



Schott formulais valid for v=c

dP = ewﬁw%l 9 19, o o2,
0= Z o {tzm 0.1 (v3cosl)+ 3-J (v cos 9)} g —1
v=0
but the harmonic number  w=vrwy, wy = (? IS N0 more
bounded at high frequencies: '

V< g~ (1= 02732 = (E/m)?

so the total power diverges. But passing to continuous spectral

distribution, integrating over angles, and taking the limit m - 0 one
obtains the non-singular spectral distribution

dp 2 )1/6 / 1/3
dw N v (WH)

which has the only problem to be non-integrable at high frequences, so
a cutoff has to be introduced. This classical formula is relevant as low-
frequency limit of en exact quantum formula.




Total power with guantum cutoff

Absence of classical cutoff corresponds to shrinking to zero of radiation
formation length for massless charge. In quantum theory formation
length can not be shorter than de Broglie length A\ = hc/E

therefore we cut on the quantum bound

Wmax — E/h

obtaining e2v/3T(2/3)

Q. 2/3
Pew = — 23— (3¢chHE)*

This expression differs from the true quantum result only by numerical
factor. It diverges as Planck’s constant goes to zero as

h—4/3

Non-analyticity in e and 7 indicates on non-perturbative nature of
this result



SR in guantum theory

Start with exact solution of the Klein-Gordon (Dirac) equation in
magnetic field producing the Landau spectrum (macroatom)

E=+eH(2n+1)+ p?

Consider radiative transitions fromnto n’

Sum up over final states to get spectral-angular distribution and the
total power

For massive charges the detailed theory was developed by Sokolov,
Klepikov, Ternov, Bagrov, Zhukovski, Borisov in 50--70-ies

Later approaches: Schwinger, Baier, Ritus... -- using mass operator,
summing over final quantum numbers implicitly

M }f/\"\ ImM z:i




SR In massless QED: Schwinger approach

Exact calculation of one loop mass operator in massless scalar QED
The corresponding term in the action —é / o(x)M (x, 2" o (2 dxda

In Schwinger sympbolic notation the exact in H one-loop mass-
operator of the massless charge reads

T B P . o dl
M = e / [(‘H Y A)] 5o M

]

where T, = —i0, —eA,. A, stands for constant magnetic field H, and
My is the subtraction term. Exponentiating two propagators

s s sds —isH ; ;
k2 (T — k)2 /0 Sds/o ’ Cwith  H=(k- ull)? — u(1 — u)I1?
one replaces integration over k is by averaging over states of the

fictituos particle M= ie2 / sds / du(€|(TT—k)! e (TT—k),,|€)
0 0

treating 7+ as Hamiltonian



Operator products are disentangled in Heisenberg representation for
fictitious particle, and are taken on shell, i.e. #(z) = ¢(r)e "F" satisfying
[*¢0 =0 with E=./eH(2n+1). The result reads
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This is true for all Landau levels n.



Quasiclassical motion n>>1

Simple analytical result can be obtained for high initial Landau levels
n>>1. The imaginary part Im M (divided by -E) gives the total
probability of radiation summed over all final n’. The integrals over x are
computed in the leading approximation in n 13 expanding the

exponential and the rest of the integrand in powers of x. One gets
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where ¢ ~ (2n + 1)az® . After x-integration one finds
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and finally ~ 9F (2/3) (3eHE) Decaying levels acquire the

Imaginary parts of energy levels E -1 /2, so the spacing must be << T

This gives upper restriction n < ik 1, ~0.5-10°
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Radiation spectrum

To get the spectral power of radiation one has to perform Fourrier
decomposition inside the mass operator

P(w) = —% Im ( / "7 M’ %)

J —00

where the modified M is

00 1
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Calculations in the quasiclassical regime n>>1 give

eZ,U Joe

T 4zE ),

f f ‘ | >Hv
(E2(8 —v%) (1 —v)*zsiny + ! (1 — cos uﬁ&)) dx
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where v=w/E . Integrating over X as before, one gets
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where the normalized spectral distribution is
introduced (red curve)
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The curve (red) has maximum iz, = — lE

The average photon energy

1 A
(hw) = E / vP (v) dv = ﬁE
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For small frequencies the spectrum
coincides with classical result.
The blue line shows the spectrum for spin 1/2
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In the case of spin 1/2 calculations are essentially similar
and lead to the following expression for the spectral power:

. 81v/3
1/2 (1’) — 64T
At the upper limit v — 1 the spin 1/2 spectral power has an
integrable divergence. The low-frequency limits are identi-
cal for both spins and coincide with the classical spectrum
(h disappears):

V31 =) 1B —204+2). (14

,31/6 w "’ eH
Palw) =e"—T'(2/3) (—) WH , WH = 7= - (15)

m WH

This power-low dependence exhibits ultraviolet catastrophe
(no high-frequency cutoft), which is cured in quantum the-

ory. _ _
One can also investigate the case of vector massless par-
ticles, s = 1, but then the result is infinite: magnetized

vector QED fails to describe radiation from massless vector
charges. This could be expected in view of the results of
Case and Gasiorovich,” who gave the arguments that elec-
tromagnetic interaction of massless charged particles with
spin one and higher is controversial.



The total power is obtained integrating over the spectrum

B/h 2¢2 T (2/3 2/
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It has exactly the same functional form as the result of intergration of
classical spectrum with qguantum cut-off, differing only by the
numerical factor of the order Y.

This quantity diverges for zero Planck’s constant. Thus, synchrotron
radiation form massless charge is essentially quantum, consisting of
hard quanta of the order of particle energy. Remarkably, this does
not depend on the value of magnetic field and the particle energy.
Even in weak magnetic field of the Earth such particles would be
observable by their radiation with universal spectrum.



No classical radiation reaction

* One consequence of quantum nature of SR from massless charge is
that the radiation reaction problem becomes meaningless. Such an
equation derived by Kazinski et al ('02) has strange features like
non-lagrangian divergent terms and fifth derivative in the finite term.
Meanwhile, massless limit in the usual Lorentz -Dirac equation
diverges, like the Larmor formula. The reason is that quantum recoll
makes the reaction problem stochastic.

 Moreover, in the sinchrotron radiation theory there is stronger
restriction on the validity of classical radiation reaction equation due
to excitation of the so-called betatron oscialltions. The threshold is

E Ei/5 =m @ 7
fluct 1/5 — 1Y 7

 |tis lower than the recoll treshold Erecoil ~ M—



SR emission of gravitons (flat space)

The charge also emits gravitons in Minkowski space in the framework
of the linearized gravity 9uv = N +2¢hy,, with interaction

Sint — z/h;wTW} y Iy

2 where ™ =T + T
Second term is Maxwell, it is needed to ensure conservation equation
0, T"" =0 | The Maxwell field must be the sum of the external

(magnetic) field and the retarded field of the charge

LV 1 1 vre LATEC 7 1 L K re
ngw = E (F'i ’\fl\ & —|—FEIA 'tF)\ — 5?}’{ FWXFHJ\‘;)

ret self rad

The retarded field has to be further split as Fx =Fixn +F
to account for resonant transformation of EM wave to GW in the
homogeneous magnetic field. One needs to keep only linear term in
the retarded field of the charge (quadratic is self-energy like)



EM-GW tansformation (Gerzenshtein effect)

Due to linearity of the Maxwell source term in the retarded field is
splits as ThY = th 4 S where
1

v — F;;,\F vrad + F;;)\L%(IF v 1 quf )\FI‘"L(]_
4 2l

SqHY — 41 (F;Mj_— vself + f,u)\solfF v
™

 The firstis trivially conserved, while the second is conserved
together with the mass term, i.e. S acts the non-local source of GW.

 The corresponding two GW amplitudes do not interfere and can be
considered separately. The first source is EM-GW transformation

* In the magnetic field (Gertsenshtein effect),

dP, dP,
res BQ 2 %lem
df? = GBR dQ

* SO the same considerations apply to it: radiation is quantum.
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Proper gravitational radiation

The second part of gravitational radiation (genuine GW)
Is generated by the sum of the sources 7+ =1Tw 4 Smv

has the spectrum falling with frequency

(JEPGVV B I (1/3) 35/6GE2&)H (WH ) 1/3

dw 27 W
which is falling with frequency, but is still non-integrable,
and quantum cut-off is thus needed.



“Quantum” spectrum

The normalized graviton spectrum is
5 / 1\ 2/3 s
YA p— — — - E— o *
Paw 3 (E) O(F — hw) w
and the average energy of emitted graviton

E/h 9
(hw) = / hwPowdw = —FE
5

0

so radiation is again hard.

Thus, graviton emission by massless non-gravitating source
computed within the linearized gravity in Minkowski space-time is
essentially quantum process. Large recoil precludes possibility of
classical description of back reaction a la Lorentz-Dirac.



Gravitational synchrotron radiation in
non-linear GR

 One can imagine flows of
photons scattered at large
angle on black holes, their
radiation can be estimated
knowing power of GSR

 Gravitational radiation Is
described by the solution of the
Teukolsky equation. Fluxes
going to infinity and to black
hole are the same, so we need
to calculate only the Weyl
Newman-Penrose scalar 4




Relastivistic orbits near black holes

o . dr\” - U = (1-2M L2\
Time-like geodesics (- | +U(r) =0 r) = )z v
dp L dt __(,_2M -1
dr — r?’ dr ' r
Circular orbits: U(r,) =0 = U'(rp) lead to
2\ T\ /2 o VAt
Y= (1 - 21\1) (1 - 3]\1) L e (1 _ &)
"p "p gl r and
: N\ 1/2 o\ —1/2 o
wo =38 _ (E) o (1_ M ) Corbits 3M < r, < 4M
dt p Codr r

are unstable and jump to large angle scattering orbits with impact
L ) (4]\1 1) ~1/2 Fory > 1 unbound orbits close to
b=3v3M make multiple revolutions

Tp



GSR from massive particles

Null circular orbitis at r,, = 3M  (light ring)
Massive ultrarelativistic orbit are close r, = (3 + )M
so that ~2 — i

Spectrum of GSR of different spins from massive
ultrarelativistic particle was calculated Misner, Brill, Ruffini, Breuer,
Chrzanowsky ...) In 70-ies, it has a cut-off at the harmonic ,,  —

of the rotation frequency. The total power for spin two was
computed in DG and Matiukhin, Sov J Nucl Phys v.45,555 ('87)

12,
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Posr =

It diverges in the massless limit



Total radiation power from massless point particle at a circular orbit

E w
Posg =k Y Z —

where the sum has no frequency cut-off and diverges

. E
Introducing quantum cut-off  m . = — , Wwe get
()
E wo uax 1 EQCU() E
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: : E’ 1D
Energy loss per revolution is AEc il
h M hwo

and the radiation efficiencyis ¢= =L A]Em £
E M ﬁw(]

This is small in most astrophysical conditions, but without invoking

guantum theory, it would be infinite!



Conclusions

Famous soft photon/graviton theorems derived by Weinberg using
perturbative Feynman diagrams are reproduced as Ward identities
associated with Bondi-Metzner-Sachs symmetries of the world
populated by massless particles

BMS supertranslations provide novel view on memory effects in
gravitational and electromagnetic radiation

They also opens a new way to solve the black hole entropy/information
problem introducing new (quantum) hair on black holes associated
with BMS on event horizon looking as condensates of soft gravitons

Problem of radiation from massless particles is solved positively,
showing that it non-zero and finite in quantum theory. Classical theory
gives correct low-frequency spectrum but it diverges in the UV.

The same is true for massless particles emitting gravitational waves

It follows that pointlike massless particles do not move along null
geodesics as assumed in General Relativity.
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