Near-perfect matchings on cylinders $C_{m} \times P_{n}$ of odd order

S. N. Perepechko
persn@newmail.ru

Petrozavodsk State University
Mathematical Modeling and Computational Physics
Dubna
July 3-7, 2017

What is a near-perfect matching?

A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum.

A vertex of the graph, which is not saturated by a matching, will be called vacancy.

Example of near-perfect matching

The number of near-perfect matchings in the graph depends on the vacancy location. If the vacancy were located on the boundary of the $C_{3} \times P_{3}$ graph, then the number of near-perfect matchings would be equal to 5 .

(We consider labeled graphs, so 2 matchings on the slide are different.)

The structure of Cartesian products

Consider the graph $G_{m, n}=C_{m} \times P_{n}$. This graph can be viewed as n copies of C_{m} placed sequentially with edges joining the corresponding vertices of C_{m}.

We number all the cycles C_{m} by integers from 1 to n . The ordinal number put in parentheses will be indicated as superscript. The union of graphs $\cup_{k=1}^{n} C_{m}^{(k)}$ forms a spanning subgraph of $G_{m, n}$.

Profile definition

Let \mathcal{V} to be the set of vertices of $G_{m, n}$ and $K_{m}^{v}(n),(v \in \mathcal{V})$ the number of near-perfect matchings on the cylinder when vacancy is fixed in the node v.
We denote by \mathcal{V}_{k} the set of vertices of the cycle $C_{m}^{(k)}$.
Consider two graphs $G_{m, n}-v_{k}^{\prime}$ and $G_{m, n}-v_{k}^{\prime \prime}$, where $v_{k}^{\prime}, v_{k}^{\prime \prime} \in \mathcal{V}_{k}, v_{k}^{\prime} \neq v_{k}^{\prime \prime}$. Since these graphs are isomorphic, then $K_{m}^{v_{k}^{\prime}}(n)=K_{m}^{v_{k}^{\prime \prime}}(n)$.
Let's introduce the notation $\hat{K}_{m}^{(k)}(n)=K_{m}^{v_{k}}(n),\left(v_{k} \in \mathcal{V}_{k}\right)$. The set of values of $\hat{K}_{m}^{(k)}(n),(k=1,2, \ldots, n)$ will be called the profile of near-perfect matchings on cylinder $G_{m, n}$.
The study is focused on key properties of $\hat{K}_{m}^{(k)}(n)$. This function satisfies the simple symmetry relation

$$
\hat{K}_{m}^{(k)}(n)=\hat{K}_{m}^{(n+1-k)}(n),(k=1,2, \ldots,\lfloor n / 2\rfloor)
$$

Profile on the cylinder $C_{5} \times P_{15}$

Values of $\hat{K}_{5}^{(k)}(15)$.

Applications in statistical physics

A well-known monomer-dimer problem.

- Y. Kong. Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density. Physical Review E, 2006, vol.74, art.061102(15).
Extensive data sets for the number of matchings on cylinders for $m \leqslant 17$.
- F.Y. Wu, W.-J. Tzeng and N.Sh. Izmailian. Exact solution of a monomer-dimer problem: A single boundary monomer on a nonbipartite lattice. Physical Review E, 2011, vol.83, art.011106(6).
Closed form expression for $\hat{K}_{m}^{(1)}(n)$.

Main topics of research

- Significantly extend the set of known values of $\hat{K}_{m}^{(k)}(n)$ in a wide range of cylinder parameters (profiles for $m \leqslant 19$).
- To explore close connections between perfect and near-perfect matchings on cylinders of the same parameter m (establish recurrence relations for fixed values of m).
- Give exact or approximate values of the coefficients of asymptotic expansions for the total number of near-perfect matchings for different values of m.

A mechanical counting method by Wilf

H.S. Wilf. A mechanical counting method and combinatorial applications. Journal of Combinatorial Theory, 1968, vol.4, pp.246-258.

Let G be an undirected graph, without loops or mutliple edges, on n vertices. Let A be the $n \times n$ vertex adjacency matrix of G, $A=\left(a_{i, j}\right)$. If n is even, consider the homogeneous polynomial

$$
\left(\sum_{i, j=1}^{n} a_{i, j} x_{i} x_{j}\right)^{n / 2}
$$

The coefficient of $x_{1} x_{2} \cdots x_{n}$ counts each 1-factor exactly $2^{n / 2}(n / 2)!$ times.

Demo version of Maple code (one thread)

[Some kinds of graphs can be produced by direct calls of library functions.
>with(GraphTheory):
[Both cylinder parameters must be odd.
$>\mathrm{m}:=11$:Cn: $=135$:
[Generate the graph and keep the list of its vertices.
$>G:=$ CartesianProduct(PathGraph(Cn), CycleGraph(m)): $\mathrm{V}:=$ Vertices(G):
[Implementation of the algorithm by Wilf for a fixed vacancy location.
$>$ Vacancy:=proc(v)

```
local Gr,VV,n,x,g,h,i,vv;global G,Match;
Gr:=DeleteVertex(G,v):
VV:=Vertices(Gr):
n:=NumberDfVertices(Gr):
```


Demo version of Maple code (continuation)

```
g:=h(x[VV[1]])^(n/2):
for i to n-1 do
    g:=eval(diff(g,x[VV [i]]), [x[VV[i]]=0,
        h(x[VV[i]])=h(x[VV[i+1]]),
        'diff'(h(x[VV[i]]),x[VV[i]])=add(x[vv],
        vv=Neighbors(Gr,VV[i]))]);
    x[vV[i]]:=0
od:
return diff(g,x[vV[n]])/(n/2)!
end:
[ Profile evaluation
\(>\) Match: = [seq(Vacancy (V [ind]), ind=1. .nops (V), m)]:
[ Do not forget to save the results on your disk!
>save Match, cat("E:\\C",m,"xP", Cn,".par");
```


Description superscripts (m is odd)

B - vacancy occurs on the boundary
$\hat{K}_{m}^{B}(n)=\hat{K}_{m}^{(1)}(n)$ - the number of near-perfect matchings on
$C_{m} \times P_{2 n+1}$ graph with one fixed vacant node on the boundary. $G_{m}^{B}(z)=\sum_{n=0}^{\infty} \hat{K}_{m}^{B}(n) z^{n}$ - generating function for the sequence $\left\{\hat{K}_{m}^{B}(n)\right\}$.
P - perfect matchings
$K_{m}^{P}(n)$ - the number of perfect matchings on $C_{m} \times P_{2 n}$ graph.
$G_{m}^{P}(z)=\sum_{n=0}^{\infty} K_{m}^{P}(n) z^{n}$ - generating function for the sequence $\left\{K_{m}^{P}(n)\right\}$.
N - near-perfect matchings
$\hat{K}_{m}^{N}(n)=m \cdot \sum_{k=1}^{n} \hat{K}_{m}^{(k)}(n)$ - the total number of near-perfect matchings on $C_{m} \times P_{2 n+1}$ graph.
$G_{m}^{N}(z)=\sum_{n=0}^{\infty} \hat{K}_{m}^{N}(n) z^{n}$ - generating function for the sequence $\left\{\hat{K}_{m}^{N}(n)\right\}$.

Computational environment

- CPU: Core i7 980, 3.3GHz (6 cores)
- RAM: 24 GiB (cache L3 12MiB)
- OS: Windows 7 professional 64-bit
- CAS: Maple 17.02 64-bit

Available facilities make it possible to find linear recurrence relations and generating functions $G_{m}^{B}(z), G_{m}^{N}(z)$ on cylinders for $m \leqslant 13$. Profiles of near-perfect matchings were evaluated on graphs $C_{m} \times P_{n}$ for $15 \leqslant m \leqslant 19$ and $n \leqslant n^{*}$, where

$$
n^{*}= \begin{cases}135, & \text { if } m=15,17 \\ 65, & \text { if } m=19\end{cases}
$$

The principal term of asymptotic expansion of $\hat{K}_{m}^{N}(n)$ $(n \rightarrow \infty)$ was obtained for all the studied values of m.

Normalized profile on cylinder $C_{7} \times P_{25}$

$$
\begin{aligned}
& \max _{1 \leqslant k \leqslant 25} \frac{\hat{K}_{7}^{(k)}(25)}{\hat{K}_{7}^{(1)}(25)}=\frac{\hat{K}_{7}^{(13)}(25)}{\hat{K}_{7}^{(1)}(25)} \approx 1.050, \min _{1 \leqslant k \leqslant 25} \frac{\hat{K}_{7}^{(k)}(25)}{\hat{K}_{7}^{(1)}(25)}=\frac{\hat{K}_{7}^{(2)}(25)}{\hat{K}_{7}^{(1)}(25)} \approx 0.643 \\
& 0.2 \\
& 0.6
\end{aligned}
$$

Cylinders $C_{3} \times P_{2 n+1}$

$$
\begin{gathered}
G_{3}^{B}(z)=\frac{1}{1-5 z+z^{2}}, G_{3}^{P}(z)=\frac{1-z}{1-5 z+z^{2}} \\
\hat{K}_{3}^{B}(n)=\frac{1}{3}\left(K_{3}^{P}(n+1)-K_{3}^{P}(n)\right) \\
\lim _{n \rightarrow \infty} \hat{K}_{3}^{B}(n) / K_{3}^{P}(n)=\frac{\sqrt{3}+\sqrt{7}}{2 \sqrt{3}} \\
G_{3}^{N}(z)=3 \frac{1+2 z-z^{2}}{\left(1-5 z+z^{2}\right)^{2}} \\
\hat{K}_{3}^{N}(n)=\frac{27 n+17}{21} K_{3}^{P}(n+1)-\frac{15 n+5}{21} K_{3}^{P}(n) \\
\hat{K}_{3}^{N}(n)=\frac{1}{7}\left((2+\sqrt{21}) n+2+\frac{11}{\sqrt{21}}\right)\left(\frac{\sqrt{7}+\sqrt{3}}{2}\right)^{2 n+2}+ \\
\frac{1}{7}\left((2-\sqrt{21}) n+2-\frac{11}{\sqrt{21}}\right)\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right)^{2 n+2}
\end{gathered}
$$

Cylinders $C_{5} \times P_{2 n+1}$

$$
\begin{gathered}
G_{5}^{B}(z)=\frac{1-z^{2}}{1-19 z+41 z^{2}-19 z^{3}+z^{4}} \\
G_{5}^{P}(z)=\frac{(1-z)\left(1-7 z+z^{2}\right)}{1-19 z+41 z^{2}-19 z^{3}+z^{4}} \\
\hat{K}_{5}^{B}(n)=\frac{1}{45}\left(K_{5}^{P}(n+2)+K_{5}^{P}(n-1)\right)-\frac{11}{45}\left(K_{5}^{P}(n+1)+K_{5}^{P}(n)\right) \\
\lim _{n \rightarrow \infty} \hat{K}_{5}^{B}(n) / K_{5}^{P}(n)=\frac{\sqrt{5}+\sqrt{30+2 \sqrt{205}}+\sqrt{41}}{4 \sqrt{5}} \\
G_{5}^{N}(z)=5 \frac{1+10 z-56 z^{2}+84 z^{3}-24 z^{4}-10 z^{5}+z^{6}}{\left(1-19 z+41 z^{2}-19 z^{3}+z^{4}\right)^{2}} \\
\hat{K}_{5}^{N}(n)=\frac{1}{615}\left(584 n+\frac{1232}{3}\right) K_{5}^{P}(n+1)-\frac{1}{123}\left(80 n+\frac{6752}{15}\right) K_{5}^{P}(n)- \\
\frac{1}{123}\left(\frac{352 n}{5}-\frac{1288}{3}\right) K_{5}^{P}(n-1)+\frac{1}{123}\left(\frac{23 n}{5}-\frac{73}{3}\right) K_{5}^{P}(n-2)
\end{gathered}
$$

Closed form expressions for odd m

$$
\begin{gathered}
c_{j}(m)=\sin \left(\frac{\pi(2 j-1)}{m}\right)+\sqrt{1+\sin ^{2}\left(\frac{\pi(2 j-1)}{m}\right)}, \\
c_{j}(m) \bar{c}_{j}(m)=-1, D_{m}^{2}=\frac{1}{2}\left((\sqrt{2}+1)^{m}-(\sqrt{2}-1)^{m}\right) .
\end{gathered}
$$

Number of perfect matchings on cylinder $C_{m} \times P_{2 n}$

$$
K_{m}^{P}(n)=\frac{1}{D_{m}} \prod_{j=1}^{\lfloor m / 2\rfloor}\left(c_{j}(m)^{2 n+1}-\bar{c}_{j}(m)^{2 n+1}\right) .
$$

Number of near-perfect matchings on cylinder $C_{m} \times P_{2 n+1}$ with vacancy on the boundary

$$
\hat{K}_{m}^{B}(n)=\frac{1}{D_{m} \sqrt{m}} \prod_{j=1}^{\lfloor m / 2\rfloor}\left(c_{j}(m)^{2 n+2}-\bar{c}_{j}(m)^{2 n+2}\right) .
$$

$\lim _{n \rightarrow \infty} \hat{K}_{m}^{B}(n) / K_{m}^{P}(n)=\frac{\Lambda(m)}{\sqrt{m}}$, where $\Lambda(m)=\prod_{j=1}^{\lfloor m / 2\rfloor} c_{j}(m)$.

A few conjectures and open problems

Conjecture 1. For all odd values of m sequences $\left\{\hat{K}_{m}^{(k)}(n)\right\}$ and $\left\{K_{m}^{P}(n)\right\}$ obey the same recurrence relation.
Conjecture 2. For all odd values of m denominator $G_{m}^{N}(z)$ is always the square of denominator $G_{m}^{P}(z)$.
Open problem 1. The results of computational experiments indicate that

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} K_{m}^{(2)}(n) / K_{m}^{(1)}(n) \approx 0.727
$$

Give closed form expression for this value.
Open problem 2. Find the asymptotics of the quantity
for large m.

$$
\lim _{n \rightarrow \infty} \max _{1 \leqslant k \leqslant n} \frac{\hat{K}_{m}^{(k)}(n)}{\hat{K}_{m}^{(1)}(n)}
$$

Conclusion

Normalized profile on cylinder $C_{9} \times P_{35}$

