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What is a near-perfect matching?

A near-perfect matching is one in which exactly one vertex is
unmatched. This can only occur when the graph has an odd
number of vertices, and such a matching must be maximum.

A vertex of the graph, which is not saturated by a matching,
will be called vacancy.



Example of near-perfect matching

The number of near-perfect matchings in the graph depends
on the vacancy location. If the vacancy were located on the
boundary of the C3 × P3 graph, then the number of
near-perfect matchings would be equal to 5.

(We consider labeled graphs, so 2 matchings on the slide are
different.)



The structure of Cartesian products

Consider the graph Gm,n = Cm × Pn. This graph can be viewed
as n copies of Cm placed sequentially with edges joining the
corresponding vertices of Cm.

We number all the cycles
Cm by integers from 1 to n.
The ordinal number put in
parentheses will be indicated
as superscript. The union
of graphs ∪n

k=1C
(k)
m forms a

spanning subgraph of Gm,n.



Profile definition

Let V to be the set of vertices of Gm,n and K v
m(n), (v ∈ V) –

the number of near-perfect matchings on the cylinder when
vacancy is fixed in the node v .

We denote by Vk the set of vertices of the cycle C (k)
m .

Consider two graphs Gm,n − v ′k and Gm,n − v ′′k , where
v ′k , v

′′
k ∈ Vk , v ′k 6= v ′′k . Since these graphs are isomorphic,

then K v ′
k

m (n) = K v ′′
k

m (n).

Let’s introduce the notation K̂ (k)
m (n) = K vk

m (n), (vk ∈ Vk). The
set of values of K̂ (k)

m (n), (k = 1, 2, . . . , n) will be called the
profile of near-perfect matchings on cylinder Gm,n.

The study is focused on key properties of K̂ (k)
m (n). This

function satisfies the simple symmetry relation

K̂ (k)
m (n) = K̂ (n+1−k)

m (n), (k = 1, 2, . . . , bn/2c).



Profile on the cylinder C5 × P15

Values of K̂ (k)
5 (15).



Applications in statistical physics

A well-known monomer-dimer problem.
Y. Kong. Monomer-dimer model in two-dimensional
rectangular lattices with fixed dimer density. Physical
Review E, 2006, vol.74, art.061102(15).

Extensive data sets for the number of matchings on
cylinders for m 6 17.
F.Y. Wu, W.-J. Tzeng and N.Sh. Izmailian. Exact solution
of a monomer-dimer problem: A single boundary
monomer on a nonbipartite lattice. Physical Review E,
2011, vol.83, art.011106(6).

Closed form expression for K̂ (1)
m (n).



Main topics of research

Significantly extend the set of known values of K̂ (k)
m (n) in

a wide range of cylinder parameters (profiles for m 6 19).
To explore close connections between perfect and
near-perfect matchings on cylinders of the same
parameter m (establish recurrence relations for fixed
values of m).
Give exact or approximate values of the coefficients
of asymptotic expansions for the total number of
near-perfect matchings for different values of m.



A mechanical counting method by Wilf

H.S. Wilf. A mechanical counting method and combinatorial
applications. Journal of Combinatorial Theory, 1968, vol.4,
pp.246-258.

Let G be an undirected graph, without loops or mutliple edges,
on n vertices. Let A be the n× n vertex adjacency matrix of G ,
A = (ai , j). If n is even, consider the homogeneous polynomial(

n∑
i , j=1

ai , jxixj

)n/2

The coefficient of x1x2 · · · xn counts each 1-factor exactly
2n/2(n/2)! times.



Demo version of Maple code (one thread)[
Some kinds of graphs can be produced by direct calls
of library functions.

>with(GraphTheory):

[ Both cylinder parameters must be odd.
>m:=11:Cn:=135:

[ Generate the graph and keep the list of its vertices.
>G:=CartesianProduct(PathGraph(Cn),CycleGraph(m)):
V:=Vertices(G):[
Implementation of the algorithm by Wilf for a fixed
vacancy location.

>Vacancy:=proc(v)
local Gr,VV,n,x,g,h,i,vv;global G,Match;
Gr:=DeleteVertex(G,v):
VV:=Vertices(Gr):
n:=NumberOfVertices(Gr):



Demo version of Maple code (continuation)

g:=h(x[VV[1]])^(n/2):
for i to n-1 do

g:=eval(diff(g,x[VV[i]]),[x[VV[i]]=0,
h(x[VV[i]])=h(x[VV[i+1]]),
’diff’(h(x[VV[i]]),x[VV[i]])=add(x[vv],
vv=Neighbors(Gr,VV[i]))]);

x[VV[i]]:=0
od:
return diff(g,x[VV[n]])/(n/2)!

end:
[ Profile evaluation
>Match:=[seq(Vacancy(V[ind]),ind=1..nops(V),m)]:
[ Do not forget to save the results on your disk!
>save Match, cat("E:\\C",m,"xP",Cn,".par");



Description superscripts (m is odd)

B – vacancy occurs on the boundary
K̂B

m (n) = K̂ (1)
m (n) – the number of near-perfect matchings on

Cm×P2n+1 graph with one fixed vacant node on the boundary.
GB

m (z) =
∑∞

n=0 K̂
B
m (n)zn – generating function for the

sequence {K̂B
m (n)}.

P – perfect matchings
KP

m(n) – the number of perfect matchings on Cm × P2n graph.
GP

m(z) =
∑∞

n=0 K
P
m(n)zn – generating function for the

sequence {KP
m(n)}.

N – near-perfect matchings
K̂N

m (n) = m ·
∑n

k=1 K̂
(k)
m (n) – the total number of near-perfect

matchings on Cm × P2n+1 graph.
GN

m (z) =
∑∞

n=0 K̂
N
m (n)zn – generating function for the

sequence {K̂N
m (n)}.



Computational environment

CPU: Core i7 980, 3.3GHz (6 cores)
RAM: 24GiB (cache L3 12MiB)
OS: Windows 7 professional 64-bit
CAS: Maple 17.02 64-bit

Available facilities make it possible to find linear recurrence
relations and generating functions GB

m (z),GN
m (z) on cylinders

for m 6 13. Profiles of near-perfect matchings were evaluated
on graphs Cm × Pn for 15 6 m 6 19 and n 6 n∗, where

n∗ =

{
135, if m = 15, 17,
65, if m = 19.

The principal term of asymptotic expansion of K̂N
m (n)

(n→∞) was obtained for all the studied values of m.



Normalized profile on cylinder C7 × P25

max
16k625

K̂ (k)
7 (25)

K̂ (1)
7 (25)

=
K̂ (13)

7 (25)

K̂ (1)
7 (25)

≈ 1.050, min
16k625

K̂ (k)
7 (25)

K̂ (1)
7 (25)

=
K̂ (2)

7 (25)

K̂ (1)
7 (25)

≈ 0.643

lim
n→∞

K̂ (2)
7 (n)

K̂ (1)
7 (n)

≈ 0.643 075 303



Cylinders C3 × P2n+1

GB
3 (z) =

1
1− 5 z + z2 ,G

P
3 (z) =

1− z
1− 5 z + z2

K̂B
3 (n) =

1
3
(
KP

3 (n + 1)− KP
3 (n)

)
lim

n→∞
K̂B

3 (n)/KP
3 (n) =

√
3 +
√
7

2
√
3

GN
3 (z) = 3

1 + 2 z − z2

(1− 5 z + z2)2

K̂N
3 (n) =

27n + 17
21

KP
3 (n + 1)− 15n + 5

21
KP

3 (n)

K̂N
3 (n) = 1

7

((
2 +
√
21
)
n + 2 + 11√

21

)(√
7+
√

3
2

)2n+2
+

1
7

((
2−
√
21
)
n + 2− 11√

21

)(√
7−
√

3
2

)2n+2



Cylinders C5 × P2n+1

GB
5 (z) =

1− z2

1− 19z + 41z2 − 19z3 + z4

GP
5 (z) =

(1− z)(1− 7z + z2)

1− 19z + 41z2 − 19z3 + z4

K̂B
5 (n) =

1
45
(
KP

5 (n + 2) + KP
5 (n − 1)

)
−11
45
(
KP

5 (n + 1) + KP
5 (n)

)
lim

n→∞
K̂B

5 (n)/KP
5 (n) =

√
5 +

√
30 + 2

√
205 +

√
41

4
√
5

GN
5 (z) = 5

1 + 10z − 56z2 + 84z3 − 24z4 − 10z5 + z6

(1− 19z + 41z2 − 19z3 + z4)2

K̂N
5 (n) = 1

615

(
584n + 1232

3

)
KP

5 (n + 1)− 1
123

(
80n + 6752

15

)
KP

5 (n) −
1

123

(
352n

5 −
1288

3

)
KP

5 (n − 1) + 1
123

(
23n
5 −

73
3

)
KP

5 (n − 2)



Closed form expressions for odd m

cj(m) = sin
(π(2j − 1)

m

)
+

√
1 + sin2

(π(2j − 1)

m

)
,

cj(m)c̄j(m) = −1, D2
m =

1
2

(
(
√
2 + 1)m − (

√
2− 1)m

)
.

Number of perfect matchings on cylinder Cm × P2n

KP
m(n) =

1
Dm

bm/2c∏
j=1

(
cj(m)2n+1 − c̄j(m)2n+1) .

Number of near-perfect matchings on cylinder Cm × P2n+1

with vacancy on the boundary

K̂B
m (n) =

1
Dm
√
m

bm/2c∏
j=1

(
cj(m)2n+2 − c̄j(m)2n+2) .

lim
n→∞

K̂B
m (n)/KP

m(n) =
Λ(m)√

m
, where Λ(m) =

bm/2c∏
j=1

cj(m).



A few conjectures and open problems

Conjecture 1. For all odd values of m sequences {K̂ (k)
m (n)}

and {KP
m(n)} obey the same recurrence relation.

Conjecture 2. For all odd values of m denominator GN
m (z) is

always the square of denominator GP
m(z).

Open problem 1. The results of computational experiments
indicate that

lim
m→∞

lim
n→∞

K (2)
m (n)/K (1)

m (n) ≈ 0.727.

Give closed form expression for this value.

Open problem 2. Find the asymptotics of the quantity

lim
n→∞

max
16k6n

K̂ (k)
m (n)

K̂ (1)
m (n)

for large m.



Conclusion

Normalized profile on cylinder C9 × P35

Thank you for your attention


