A duality network of linear quivers

Frederic Brijnner

DIAS summer school Dubna, September 2016

Frederic Brünner 1 / 28

Statement:

Supersymmetric QCD is dual to a large number of linear quiver gauge theories.

Based on:

FB, V.P. Spiridonov, Phys. Lett. B **761** (2016) 261. FB, V.P. Spiridonov, to appear

Frederic Brünner 2 / 28

Supersymmetric QCD:

- SUSY gauge theory with gauge group $SU(N_c)$ and $SU(N_f) \times SU(N_f) \times U(1)_B$ flavour symmetry
- ullet $\mathcal{N}=1$ supersymmetry o R-symmetry $U(1)_R$
- Axial U(1) anomalous
- ullet N_f quarks and squarks in chiral multiplets ${f Q}^i$ and ${f ilde Q}_i$
- ullet $SU(N_c)$ gauge field part of vector multiplet ${f V}$

Frederic Brünner 3 / 28

	$SU(N_c)$	$SU(N_f)$	$SU(N_f)$	$U(1)_B$	$U(1)_R$
\mathbf{Q}^i	f	f	1	1	$(N_f - N_c)/N_f$
$\tilde{\mathbf{Q}}_i$	$ar{f}$	1	$ar{f}$	-1	$(N_f - N_c)/N_f$
\mathbf{V}	adj	1	1	0	1

Gauge invariant operators ("hadrons"):

$$M_j^i = \mathbf{Q}^i \tilde{\mathbf{Q}}_j$$

$$B^{i_1,\dots,i_{N_c}} = \mathbf{Q}^{i_1} \cdots \mathbf{Q}^{i_{N_c}}$$

$$B_{i_1,\dots,i_{N_c}} = \tilde{\mathbf{Q}}_{i_1} \cdots \tilde{\mathbf{Q}}_{i_{N_c}}$$

Frederic Brünner 4 / 28

Seiberg, '94:

$$3N_c/2 < N_f < 3N_c$$
: \exists IR fixed point \rightarrow SCFT

ightarrow dual description with gauge group $SU(N_f-N_c)$

$$eSQCD \iff mQCD$$

→ Seiberg duality

Frederic Brünner 5 / 28

Matter content of mSQCD:

	$SU(\tilde{N}_c)$	$SU(N_f)$	$SU(N_f)$	$U(1)_B$	$U(1)_R$
\mathbf{q}^i	f	$ar{f}$	1	N_c/\tilde{N}_c	N_c/N_f
$\mathbf{\tilde{q}}_i$	$ar{f}$	1	f	$-N_c/\tilde{N}_c$	N_c/N_f
\mathbf{V}	adj	1	1	0	1
\mathbf{M}	1	f	$ar{f}$	0	\tilde{N}_c/N_f

for
$$\tilde{N}_c = N_f - N_c$$

Checks?

- 't Hooft anomaly matching ('t Hooft, '79)
 - ▶ Chiral anomalies of different descriptions should match
 - ▶ Satisfied for $SU(N_f) \times SU(N_f) \times U(1)_B \times U(1)_R$ of Seiberg dual theories!
- BPS state counting
 - Superconformal index should be independent of description
 - Also satisfied, but not obvious hard to prove!

Frederic Brünner 7 / 28

Checks?

- 't Hooft anomaly matching ('t Hooft, '79)
 - ▶ Chiral anomalies of different descriptions should match
 - ▶ Satisfied for $SU(N_f) \times SU(N_f) \times U(1)_B \times U(1)_R$ of Seiberg dual theories!
- BPS state counting
 - Superconformal index should be independent of description
 - Also satisfied, but not obvious hard to prove!

Frederic Brünner 8 / 28

 $\mathcal{N}=1$ SUSY generated by $Q^{lpha},~ \tilde{Q}^{\dot{lpha}},$ four real charges

BPS states preserve only part of the supersymmetry

→ also known as short multiplets/representations

How to count them?

Frederic Brünner 9 / 28

Kinney, Maldacena, Minwalla, Raju, '05:

Countable in SCFTs by computing the superconformal index (SCI):

$$\mathcal{I} = \text{Tr}(-1)^{\mathcal{F}} e^{-\beta H} p^{\frac{R}{2} + J_R + J_L} q^{\frac{R}{2} + J_R - J_L} \prod_i z_i^{G_i} \prod_j y_j^{F_j}$$

 $R \dots$ R-charge, $\beta \dots$ chemical potential $J_L, J_R \dots$ Cartan generators of $SU(2)_L \times SU(2)_R$ $G_i, F_j \dots$ generators of gauge and flavour groups $p, q, z_i, y_j \dots$ complex fugacities

Contributions only from $H = E - 2J_L - \frac{3}{2}R = 0$

Frederic Brünner 10 / 28

Properties

- Only BPS states contribute
- \bullet Not affected by SUSY preserving deformations \to invariant under RG flow!
- Topological quantity
- Only depends on group-theoretic information

Frederic Brünner 11 / 28

Gauge invariance: rewritten as

$$\mathcal{I}(p,q,y) = \int_G d\mu(g) \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} i(p^n, q^n, y^n, z^n)\right),\,$$

Single particle index i(p,q,y,z) depends on characters χ_{adj} , χ_f , $\chi_{ar{f}}$, \dots

Information easily available!

Frederic Brünner 12 / 28

In principle easy recipe for checking dualities:

- Deduce representations and their characters from field content
- 2 Compute SCI for both theories
- Indices match if theories actually dual

In practice hard:

- Integrals computable exactly only in rare cases
- Identification of integrals hard to prove

Frederic Brünner

Dolan, Osborn, '08:

Solution: rewrite SCIs as elliptic hypergeometric integrals

Many integral identities known and applicable to SCIs!

→ Fruitful interchange between mathematics and physics

Frederic Brünner 14 / 28

SCI of eSQCD:

$$\mathcal{I}_{\text{eSQCD}} = I_n^{(m)}(\mathbf{s}, \mathbf{t}) = \kappa_n \int_{\mathbb{T}^n} \frac{\prod_{j=1}^{N_c} \prod_{l=1}^{N_f} \Gamma(s_l z_j, t_l^{-1} z_j^{-1})}{\prod_{1 \le j < k \le N_c} \Gamma(z_j z_k^{-1}, z_j^{-1} z_k)} \prod_{k=1}^{N_c - 1} \frac{dz_k}{2\pi i z_k},$$

with $N_c=n+1$, $N_f=m+n+2$ and ${\bf s},{\bf t}$ contain flavours

$$\Gamma(z) := \Gamma(z; p, q) = \prod_{i,k=0}^{\infty} \frac{1 - z^{-1} p^{j+1} q^{k+1}}{1 - z p^{j} q^{k}}$$

Field content can be read off directly!

Frederic Brünner 15 / 28

	$SU(N_c)$	$SU(N_f)$	$SU(N_f)$	$U(1)_B$	$U(1)_R$
\mathbf{Q}^i	f	f	1	1	$(N_f - N_c)/N_f$
$\tilde{\mathbf{Q}}_i$	$ar{f}$	1	$ar{f}$	-1	$(N_f - N_c)/N_f$
\mathbf{V}	adj	1	1	0	1

$$I_n^{(m)}(\mathbf{s}, \mathbf{t}) = \int_{\mathbb{T}^{N_c - 1}} \frac{\prod_{j=1}^{N_c} \prod_{l=1}^{N_f} \Gamma(s_l z_j, t_l^{-1} z_j^{-1})}{\prod_{1 \le j < k \le N_c} \Gamma(z_j z_k^{-1}, z_j^{-1} z_k)} \prod_{k=1}^{N_c - 1} \frac{dz_k}{2\pi i z_k}$$

Characters:
$$\chi_{SU(N),f} = \sum_{i}^{N} x_{i}$$
, $\chi_{SU(N),\bar{f}} = \sum_{i}^{N} x_{i}^{-1}$, $\chi_{SU(N),adj} = \sum_{1 \leq i,j \leq N} x_{i}x_{j}^{-1} - 1$

Frederic Brünner 16 / 28

	$SU(\tilde{N}_c)$	$SU(N_f)$	$SU(N_f)$	$U(1)_B$	$U(1)_R$
\mathbf{q}	f	$ar{f}$	1	N_c/\tilde{N}_c	N_c/N_f
${\bf \tilde{q}}$	$ar{f}$	1	f	$-N_c/\tilde{N}_c$	N_c/N_f
\mathbf{V}	adj	1	1	0	1
${f M}$	1	f	$ar{f}$	0	\tilde{N}_c/N_f

$$\mathcal{I}_{\text{mSQCD}} = \prod_{j,k=1}^{N_f} \Gamma(t_j s_k) \int_{\mathbb{T}^{\tilde{N}_c - 1}} \frac{\prod_{j=1}^{\tilde{N}_c} \prod_{l=1}^{N_f} \Gamma(s'_l z_j, t'_l^{-1} z_j^{-1})}{\prod_{1 \le j < k \le \tilde{N}_c} \Gamma(z_j z_k^{-1}, z_j^{-1} z_k)} \prod_{k=1}^{\tilde{N}_c - 1} \frac{dz_k}{2\pi i z_k}$$

$$= \prod_{j,k=1}^{N_f} \Gamma(t_j s_k) I_m^{(n)}(\mathbf{s}', \mathbf{t}')$$

Frederic Brünner 17 / 28

Rains, '03:

$$I_n^{(m)}(\mathbf{s}, \mathbf{t}) = \prod_{j,k=1}^{n+m+2} \Gamma(t_j s_k) I_m^{(n)}(\mathbf{s}', \mathbf{t}')$$

Proves matching of SCIs for Seiberg duality, i.e.

$$\mathcal{I}_{\mathrm{eSQCD}} = \mathcal{I}_{\mathrm{mSQCD}}$$

Similar proofs for countless other SCIs

Frederic Brünner 18 / 28

Strategy so far:

- Identify dual theories (e.g. Seiberg duality)
- Extract group theoretic information (representations and characters)
- Compute SCIs
- Use theory of elliptic hypergeometric functions to prove their equivalence

Possible to turn this around?

Frederic Brünner 19 / 28

New Strategy:

- Derive new integral identities
- Identify integrals as SCIs
- Read off field content
- Conjecture new dualities

Frederic Brünner 20 / 28

Spiridonov, '08, FB, Spiridonov, 1605.06991:

Recursion relation for elliptic hypergeometric integrals on A_n root system:

$$I_n^{(m+1)}(\mathbf{s}, \mathbf{t}) = \mathbf{Q}_n^m I_n^{(m)}(\tilde{\mathbf{s}}, \mathbf{t})$$

$$\mathbf{Q}_{n}^{m} := \zeta(v) \times \int_{\mathbb{T}^{n}} \frac{\prod_{j=1}^{n+1} \Gamma(\frac{t_{n+m+3}w_{j}}{v^{n}}) \prod_{l=1}^{n+2} \Gamma(\frac{s_{l}}{vw_{j}})}{\prod_{1 \le j < k \le n+1} \Gamma(w_{j}w_{k}^{-1}, w_{j}^{-1}w_{k})} \prod_{k=1}^{n} \frac{dw_{k}}{2\pi \mathrm{i}w_{k}}$$

$$\zeta(v) = \frac{\kappa_{n}}{\Gamma(v^{n+1})} \prod_{l=1}^{n+2} \frac{\Gamma(t_{n+m+3}s_{l})}{\Gamma(v^{-n-1}t_{n+m+3}s_{l})}$$

$$\tilde{\mathbf{s}} = (vw_{1}, \dots, vw_{n+1}, s_{n+3}, \dots, s_{n+m+3})$$

Frederic Brünner 21 / 28

L.h.s.: SCI of SQCD, r.h.s: SCI of linear quiver!

Flavour symmetries different from SQCD, subgroups!

$$SU(N_f - N_c - 1) \times SU(N_c + 1) \times U(1) \subset SU(N_f)$$

$$SU(N_f - 1) \times U(1) \subset SU(N_f)$$

Superpotential?

't Hooft anomaly matching confirmed

Frederic Brünner 22 / 28

	$SU(N_c)_1$	$SU(N_c)_2$	$SU(N_f - N_c - 1)$	$SU(N_c + 1)$	$SU(N_f - 1)$	U(1)	U(1)	$U(1)_B$	$U(1)_R$
\mathbf{A}_1	1	f	1	1	1	$\frac{1}{N_c}$	$-\frac{N_c-1}{N_c}$	N_c	$\frac{N_f - N_c - (N_c - 2)(N_f - N_c - 2)}{2N_f}$
\mathbf{A}_2	1	\bar{f}	1	$ar{f}$	1	$-\frac{1}{N_c}$	$-\frac{1}{N_c(N_c+1)}$	0	$\frac{1}{N_f}$
\mathbf{A}_3	f	1	1	1	f	$-\frac{1}{N_f-1}$	0	1	$\frac{N_f - N_c}{2N_f}$
\mathbf{A}_4	\bar{f}	f	1	1	1	$\frac{1}{N_c}$	$\frac{1}{N_c}$	-1	$\frac{N_f - N_c - 2}{2N_f}$
\mathbf{A}_5	\bar{f}	1	$ar{f}$	1	1	0	$-\frac{1}{N_f-N_c-1}$	-1	$\frac{N_f - N_c}{2N_f}$
\mathbf{M}_1	1	1	1	1	1	-1	1	N_c	$1 + \frac{N_c(N_c+2-N_f)}{2(N_f-1)}$
\mathbf{M}_2	1	1	1	$ar{f}$	1	1	$\frac{1}{N_c+1}$	0	$\frac{N_f - \dot{N}_c}{N_f}$
\mathbf{M}_3	1	1	1	f	1	-1	$-\frac{1}{N_c+1}$	$-N_c$	$\frac{N_c(N_f - N_c)}{2N_f}$

Frederic Brünner 23 / 28

Recursion can be iterated!

Example: SQCD with
$$N_c=3$$
 and $N_f=6$: $\mathcal{I}_{\mathrm{eSQCD}}=I_2^{(2)}$

Recursion relation leads to

$$\begin{split} I_2^{(2)} &= \mathbf{Q}_2^1 I_2^{(1)} \\ &= \mathbf{Q}_2^1 \mathbf{Q}_2^0 I_2^{(0)} \end{split}$$

Two distinct linear quivers!

Frederic Brünner 24 / 28

New dualities can be combined with Seiberg duality, schematically:

$$I_n^{(m)} = c_m^n I_m^{(n)}$$
 S

$$I_n^{(m+1)} = \mathbf{Q}_n^m I_n^{(m)} \quad \mathbf{Q}$$

Leads to a large duality web of linear quivers dual to SQCD!

True both for eSQCD and mSQCD.

s-confinement

Duality network for SQCD with $N_c=3$ and $N_f=6$:

Frederic Brünner 26 / 28

Summary:

- SCIs serve as a check for dualities, e.g. Seiberg duality, AdS/CFT, ...
- SCIs can be written in terms of elliptic hypergeometric functions
- SCIs of dual theories can be proven to be identical
- We have used new identities to deduce new dualities and gathered evidence for the statement that

SQCD is dual to a large number of linear quiver gauge theories.

Frederic Brünner 27 / 28

Outlook:

- Gain better understanding of these dualities
- Find connections to other (linear) quivers
- Embed the dualities in string theory
- Explore possible relations to topological QFT and 2d lattice models
- Find more related dualities (FB, Spiridonov, to appear)

Frederic Brünner 28 / 28