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 CLIC accelerator

 Detector requirements and design
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 Higgs physics

 Physics of top quark

 BSM physics

 Conclusions and summary
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Compact Linear Collider Project CLIC

Motivation for e+e- colliders  
 Precision measurement  of the newly discovered Higgs boson 
 Measurement of the properties of top quark with high precision
 Searches  for  physics  beyond Standard model

Complimentarity to the LHC
 Initial state well known (energy, polarization) 
 High energy e+e- colliders provide a experimental environment for precision measurements 
 Equal sensitivity to electroweak and strongly interacting particles
 Clean experimental environment (almost QCD background free, triggerless readout, low radiation  

levels)

CLIC is one of the most mature options of the future e+e- colliders
 Novel two-beam acceleration technique
 Rich physics program over a wide time span
 Staged  construction with the ultimate energy reach  of 3 TeV
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Three center-of-mass energies:   350/380 GeV, 1.5 TeV,  3.0 TeV
 Stages are defined by physics and technical considerations

 Optimization w.r.t. cost  and sensitivity of the measurements

 Provides early start of physics: construction possible during physics run at the lower energy stage 

 Stages adaptable to the LHC input

 High instantaneous luminosity at 

each stage: ~  1.5 - 6 x10-34 cm-2 s-1

4

CLIC staged implementation
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 Technology challenge: high energy and high luminosity

 Newly developed principle of particle acceleration: “Two-beam technique”

Drive beam: high current (100 A), low energy (2.4 GeV -240 MeV),  klystron acceleration

Main beam: lower current (1.2 A), high energy (9 GeV-1.5 TeV)

accelerated by the RF waves, produced by the deceleration of the drive beam in RF cavities 

 High energy     high accelerating gradient  

 CLIC will be operating at high gradient level (100 MV/m)

at the highest energy stage of 3 TeV

 Two beam technique demonstrated at CERN, CLIC CTF3 test facility

Accelerator technology
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 CLIC challenge: high luminosity small beam sizes at interaction point

 Dense bunches high electric field inside each bunch,

which is influencing the particles in the opposite bunch

 This induces emission of radiation – beamstrahlung

 Beamstrahlung important energy loses at the IP

 distortion of the luminosity spectrum

~35% in 1% of peak energy of 3TeV

 e+e- pairs – high doses deposited in the forward calorimeters

  to hadrons = 3.2/bunch crossing at 3TeV – influences event reconstruction

CLIC working environment
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High precision measurements constrain the detector technologies and design
 Jet energy resolution:                                 Calorimeters

Benchmark: W/Z/H di-jet mass separation

 Momentum resolution:                                        Tracker
Benchmark: Higgs recoil mass measurements, g2

H

 Impact parameter resolution:                  Vertex detector
Benchmark: flavor tagging – Higgs BF measurements

 Detector hermeticity - almost 4 solid angle coverage 

7

Detector requirements 

H→
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Optimized detector model for CLIC:
 Forward region calorimeters:

 Luminosity calorimeter

 Beam calorimeter

 Ultra-low-mass Si-pixel (2x109) vertex detector 

 Silicon tracker r=1.5 m , l = 4.6 m

 Fine grained calorimeters: 

• ECAL Si/W, HCAL  Sc/Fe

 Superconducting solenoid B=4T

 Return iron yoke instrumented with muon chambers

*Final focusing (QD0) is outside the detector

CLIC detector
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Three construction stages are optimized for physics runs (each 5 to 7 years of running)
Each stage foresees high luminosities 

Stage 1      380 GeV 0.5 ab-1 :      
 Standard model Higgs physics measurement
 Top physics
 tt threshold scan dedicated run at ~350 GeV 100 fb-1

Stage 2      1.5 TeV 1.5 ab-1

 Targeted at BSM physics
 Top-Yukawa coupling ttH , Higgs self coupling
 Rare Higgs decays
 Top quark physics
Stage 3      3 TeV 3.0 ab-1

 BSM physics,
 Higgs self coupling
 Rare Higgs decays
 Top quark physics

CLIC physics program
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 Measurement of the Higgs properties: mass, couplings (including self-coupling)
 Deviation from the predicted linearity of SM Higgs couplings could hint at new physics
 At lepton colliders the total Higgs decay width, H, is accessible

Higgs physics

Higgsstrahlung HZ WW-fusion ZZ-fusion

Previous  CLIC staging scenario                                                        no polarization
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Using hadronic Z-qq decay (BF~70%), the combined uncertainty
(leptonic and hadronic) :

Analysis optimized to ensure the independence on Higgs decays
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mrec  tag event with Higgs boson
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Model independent HZ measurement
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Top-Yukawa coupling

Higgs-self coupling :   access to Higgs potential

The high cross-section of the WW-fusion process :
 Increases the precision of Higgs couplings,

 Allows the coupling measurements of the rare decays,

 And the determination of the invariant mass of Higgs boson with
high precision (mH=32 MeV)

12

Higgs physics at high energies
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Measurement summary

Summary of  CLIC Higgs studies
 25 independent analyses done in full simulation including the beam-induced background overlay

 The results show  expected statistical uncertainties for unpolarized beams
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Global fit

 The results of all studied Higgs production and decay channels, obtained at each energy stage, are
combined in a global fit to extract absolute couplings and the total Higgs decay width

 Assumption: 80% electron polarization for 1.4 TeV and 3 TeV measurements
 Two types of fit applied:

 Model independent: free parametersH and ten Higgs couplings
 Model dependent: H constrained by the SM expectations ; no invisible Higgs decays

arXiv:1608.07538
much more accurate than HL-LHC

similar accuratcy HL-LHC
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 Top quark couples most strongly with Higgs field  closest insights to the electroweak symmetry
breaking

 Loop contribution to the processes that can be studied with high precision shows sensitivity to BSM
signals

 Uncertainty of the top mass, along with the uncertainty on the Higgs boson mass, is one of the key
inputs to the studies of the SM vacuum stability

Dedicated measurements:
Top quark mass
 Top quark threshold scan

 Direct reconstruction

Top -Yukawa coupling
Probe of new physics
 Top quark electroweak couplings

 Top quark production asymmetries

 CP violation in top sector

Top physics

Degrasi et al. Arxiv 1205.6497v2
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Resonant behavior of the cross-section near  the production threshold bound  tt state 

Top treshold scan

 Top quark mass mt

 Top quark width t

 Strong coupling constant S

 Top-Yukawa coupling yt

Dedicated run around threshold with 100 fb-1

 Ten scan points, 1 GeV, 10 fb-1

 mt total uncertainty ~50 MeV (~30 MeV stat)
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Top electroweak couplings

CP CONSERVING COUPLINGS

Top as a probe of New physics: top electroweak couplings

 At higher energy, main targets are the determination of the top quark
couplings to Z boson and photon

 Vertices tt , ttZ – sensitivity to the deviation from the SM
 The contribution of Z or  depend on beam polarization
 These vertices can be described via form factors (couplings)

Determination of the couplings:
 Measurement of the cross-section
 Measure forward-backward asymmetry AFB

 Measure left-right asymmetry ALR

for different polarizations

Results are significantly better than HL-LHC even for the
first CLIC energy stage
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CLIC operating at high energy provides significant discovery potential for BSM physics

Direct searches of new particles
 Possible observation of the new phenomena 

 Precision measurements of new particle properties 

 Kinematic limit at the of 1.5 TeV

Indirect searches 
 Precision measurements of sensitive observables reveal a                                                                     

signs of new physics, comparing to the SM expectations

 Kinematic limit is higher – several tens of TeV

Next slides: examples of some  benchmark BSM studies

18

BSM physics at CLIC
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Heavy Higgs bosons at 3 TeV
Reconstruction of four heavier Higgs degrees of freedom
e+e-→H0A
e+e-→H+H-

Almost degenerate in mass
m/m=0.3 %

Reconstruction of the SUSY particles

Chargino and neutralino

Reconstruction
of W/Z/h in hadronic decays: 
4 jets and missing energy

19

BSM physics: direct measurements

Masses of superpartners can be measured with ~1% up to a kinematic limit
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Extended gauge theories, Z:
 Hypothetical gauge boson
 Precision measurement of using polarized

beams
 Compared to the SM predictions for

cross-sections, AFB, ALR

Minimal anomaly-free (AFZ’) model :
 Discovery reach up to tens of TeV
 HL-LHC reaches ~8 TeV with 3 ab-1

20

BSM physics: indirect measurements

Composite Higgs:
 Higgs as a composite bound state of fermions
 m are the masses of vector resonances
 4f scale of compositness
 =(v/f)2 measures the strength of Higgs

interactions

In AFZ’ theory, sensitivity on the mass can reach several tens of TeV
Composite scale reaches up to 70 TeV
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 CLIC is an attractive option for the future e+e- collider.

 Feasibility of the new acceleration technique based on a two-beam technology,
with high gradient of 100 MV/m, is demonstrated.

 The CLIC detector is optimised to the benchmark physics processes.

 Performed physics studies show excellent potential of CLIC for precision
measurements, as well as large discovery potential for physics beyond the
Standard model.

 Close look to possible discoveries at LHC

21

Conclusions
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 Focus on CLIC physics and detector studies:

 Physics prospects and simulation studies

 Detector optimization (Research & Development) for the
future Compact Linear Collider (CLIC)

 28 Institutes from 18 countries

 http://clicdp.web.cern.ch/

22

The CLICdp Collaboration
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New CLICdp publications

 Comprehensive Higgs physics paper http://arxiv.org/abs/1608.07538
 New baseline for a staged CLIC http://arxiv.org/abs/1608.07537

http://arxiv.org/abs/1608.07538
http://arxiv.org/abs/1608.07537
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Thank you !
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BACKUP
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CLIC Project timeline
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