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Effective theories

» Example from QED: [Grozin'09)
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» But also we have interecting fermions term 157“1/)14“
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Effective approach to the scalar potential

» Near phase transiotion point physics become very sensitive to input
parameters and higher order effects e.g.

» Phase transitions in various condensed matter systems described different
varioations of the O(N) ¢* theories
» Standard Model near the point of the spontaneous symmetry breaking
» Effectinve potential approach is a way to account infinite sum of the higher
dimensional interaction terms in lagrangian with higher order perturbative
corrections
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» From the QED example we saw how to account for the fixed dimensionality
terms, but what about all posible cases?



Lagrangian parameters and mass scales
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mass terms triple interaction quartic interaction
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» O(N) symmetric scalar ¢* theory with (¢1) = v # 0 and all other (p;) =0
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» Standard Model in the broken phase
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Known results for the effective potential

2-loop Analytically SM [Ford,Jack,Jones'93], general theory [Martin'01]

3-loop Numerically general theory [Martin'17]
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Three-loop analytically known results:

> Massless broken O(IN) symmetric ¢* theory (only O(1) part) mZ = 3m%
[Chung,Chung'97;Kotikov’'98]

» Single component masive p? theory only mpy
[Chung,Chung'99]

Our goal: J

General case m # 0 with two scales mg # mpy




Three-loop topologies for vacuum integrals
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Topology A is a single scale, reduction using MATAD ([Steinhauser'00] master
integrals known up to the weight 6 [Kniehl,A.P. Veretin'17]

Topologies B and C have 11 master integrals each depending on a single
2
variable x = ("’—C) , reduction using LiteRed [Lee'14]
mpyg
Differentiating in x and reducing back to the set of the mater integrals we
obtain closed system of 11 differential equations:
O Ja(e,2) = Map(e, ) Jy(g, x)

We are looking for the solution as a series expansion in ¢ =2 — d/2



Iterated integrals
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» Harmonic polylogarithms(HPL), include Li,, and S,, ,,

1 1 1
f-1(z) = 1 fo(z) = Py fi(z) = s+ 1
» Generalized polylogarithms(GPL), include HPL
1
falz) = z—a

» Cyclotomic polylogarithms, after factorization over C and partial fractioning
can be reexpressed through GPL

B = B =1n )= [ (s )
a @a »J 0 9 n

(Z) ged(k,n)=1
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Differential equations and canonical basis

Set of the master integrals is not unique, we are looking for the basis, which
coefficients of e-expansion have constant transcendental weight

Differentiation reduces transcendental weight by one, if we assign weight one
to €, DE for integrals in a new basis would have following form [Henn'13]:

O2ga() = eMap(2)gp(x)

For the coefficients of e-expansion system decouple and solution can be
written explicitly, upto a constant for each integration:

ga{e"} () = / dy Mas(9) 9o{e" 1 (5) + Carm

For system solvable in terms of GPL, algorithmic ways of canonical basis
construction exists [Lee'14] and [Meyer'16] with public implementations Fuchsia
[Gituliar,Magerya'17], epsilon [Prausa’l7] and CANONICA [Meyer'17]

Rational transformation can be constructed only after apropriate variable

change
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Cyclotomic polylogarithms integration

» System in canonical basis can be easily decomposed into the form, where
By and Cyp, are pure numeric matrices and all y dependence is inside
functions f° known how to integrate using definition of CPL:

B(y) = (fdBoo + f{Bi,o + f3Boo + fyBso + f3 B3
+fiBua1+ [§Boo + feBs + fiaBi2a + fi2Bia,3)
Cly) = (fgco,o + f?CLo + fgczo + fp?c:a,o + f3103,1
+f1Ca1 + f§Co.0 + f5Co 1 + fCs.3)
» Integration constants fixed from the finite number of terms in small mg

mass expansion (y — 0) of integrals and expansion of result in terms of CPL
using HarmonicSums package [Ablinger'13] and our own implementation

» Finite parts of the three-loop integrals are expressible through the cyclotomic
polylogarithms up to the weight four
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Numerical evaluation and transformations

Cyclotomic polylogarithms are easy to evaluate with high precision as a
series expansion near zero

Comparing to HPL and even GPL lack of transformation rules like z — 1 —x
Differential equations with initial conditions are known for CPL

Possible to construct terms of series expansion in different regions using
expansion around singular points [Lee,Smirnov,Smirnov'17]



Conclusion

. We have calculated closed three-loop analytical expression for the massive
scalar theory in the broken phase in the broken phase

. New set of the two-mass three-loop tadpole integrals calculated

. New set of functions from the iterated integrals class used to represent
results of the calculation and need further investigation
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Thank you for attention!



