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Effective theories
I Example from QED: [Grozin’09]

L = −1
4FµνF

µν + c1 (FµνFµν)2 + c2FµνF
ναFαβF

βµ

I But also we have interecting fermions term ψ̄γµψAµ

In the me →∞ limit lead to the
massive tadpoles and from them we
define c1 and c2
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Effective approach to the scalar potential

I Near phase transiotion point physics become very sensitive to input
parameters and higher order effects e.g.

I Phase transitions in various condensed matter systems described different
varioations of the O(N) ϕ4 theories

I Standard Model near the point of the spontaneous symmetry breaking
I Effectinve potential approach is a way to account infinite sum of the higher

dimensional interaction terms in lagrangian with higher order perturbative
corrections

Veff = φ̄ + φ̄2

2! + φ̄3

3! + φ̄4

4! + . . .

I From the QED example we saw how to account for the fixed dimensionality
terms, but what about all posible cases?
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Lagrangian parameters and mass scales

LS = mH
2

2 H2 + mG
2

2 G2
i︸ ︷︷ ︸

mass terms

+ τ0
6 H

3 + τi
6 HG

2
i︸ ︷︷ ︸

triple interaction

+ λ0

24H
4 + λi

12H
2G2

i + λij
24 G

2
iG

2
j︸ ︷︷ ︸

quartic interaction

I O(N) symmetric scalar ϕ4 theory with 〈ϕ1〉 = v 6= 0 and all other 〈ϕi〉 = 0

L = m2

2 ϕ2 + λ

24(ϕ2)2

τ0 = τi = λv, λ0 = λi = λij = λ m2
H = m2 + λ

2 v
2,m2

G = m2 + λ

6 v
2

I Standard Model in the broken phase

L = m2Φ†Φ + λ

6 (Φ†Φ)2, Φ = 1√
2

(v +H + iG0, Gr + iGi)T

τ0 = τi = λv, λ0 = λi = λij = λ m2
H = m2 + λ

2 v
2,m2

G = m2 + λ

6 v
2
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Known results for the effective potential
2-loop Analytically SM [Ford,Jack,Jones’93], general theory [Martin’01]

3-loop Numerically general theory [Martin’17]

D(mH) = = 1
p2 +m2 + λv2

2
, D(mG) = = 1

p2 +m2 + λv2

6

Three-loop analytically known results:

I Massless broken O(N) symmetric ϕ4 theory (only O( 1
ε ) part) m2

G = 3m2
H

[Chung,Chung’97;Kotikov’98]

I Single component masive ϕ4 theory only mH

[Chung,Chung’99]

Our goal:
General case m 6= 0 with two scales mG 6= mH
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Three-loop topologies for vacuum integrals
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I Topology A is a single scale, reduction using MATAD [Steinhauser’00] master
integrals known up to the weight 6 [Kniehl,A.P.,Veretin’17]

I Topologies B and C have 11 master integrals each depending on a single
variable x =

(
mG

mH

)2
, reduction using LiteRed [Lee’14]

I Differentiating in x and reducing back to the set of the mater integrals we
obtain closed system of 11 differential equations:

∂xJa(ε, x) = Mab(ε, x)Jb(ε, x)
I We are looking for the solution as a series expansion in ε = 2− d/2
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Iterated integrals
x∫

0

dz1f1(z1)
z1∫

0

dz2f2(z2)
z2∫

0

dz3f3(z3)· · ·
zn−1∫
0

dznfn(zn)

I Harmonic polylogarithms(HPL), include Lin and Sn,p

f−1(z) = 1
z − 1 , f0(z) = 1

z
, f1(z) = 1

z + 1

I Generalized polylogarithms(GPL), include HPL

fa(z) = 1
z − a

I Cyclotomic polylogarithms, after factorization over C and partial fractioning
can be reexpressed through GPL

f ba(z) = zb

Φa(z) , f
0
0 (z) = 1/z, Φn(z) =

∏
gcd(k,n)=1

(
z − e2πi k

n

)
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Differential equations and canonical basis
I Set of the master integrals is not unique, we are looking for the basis, which

coefficients of ε-expansion have constant transcendental weight
I Differentiation reduces transcendental weight by one, if we assign weight one

to ε, DE for integrals in a new basis would have following form [Henn’13]:

∂xga(x) = εMab(x)gb(x)
I For the coefficients of ε-expansion system decouple and solution can be

written explicitly, upto a constant for each integration:

ga{εn}(y) =
∫
dyMab(y) gb{εn−1}(y) + Ca,n

I For system solvable in terms of GPL, algorithmic ways of canonical basis
construction exists [Lee’14] and [Meyer’16] with public implementations Fuchsia
[Gituliar,Magerya’17], epsilon [Prausa’17] and CANONICA [Meyer’17]

I Rational transformation can be constructed only after apropriate variable
change

x = y2

(1 + y2)2
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Cyclotomic polylogarithms integration

I System in canonical basis can be easily decomposed into the form, where
Ba,b and Ca,b are pure numeric matrices and all y dependence is inside
functions f ba known how to integrate using definition of CPL:

B(y) =
(
f0

0B0,0 + f0
1B1,0 + f0

2B2,0 + f0
3B3,0 + f1

3B3,1

+f1
4B4,1 + f0

6B6,0 + f1
6B6,1 + f1

12B12,1 + f3
12B12,3

)
C(y) =

(
f0

0C0,0 + f0
1C1,0 + f0

2C2,0 + f0
3C3,0 + f1

3C3,1

+f1
4C4,1 + f0

6C6,0 + f1
6C6,1 + f3

8C8,3
)

I Integration constants fixed from the finite number of terms in small mG

mass expansion (y → 0) of integrals and expansion of result in terms of CPL
using HarmonicSums package [Ablinger’13] and our own implementation

I Finite parts of the three-loop integrals are expressible through the cyclotomic
polylogarithms up to the weight four
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Numerical evaluation and transformations

I Cyclotomic polylogarithms are easy to evaluate with high precision as a
series expansion near zero

I Comparing to HPL and even GPL lack of transformation rules like x→ 1− x

I Differential equations with initial conditions are known for CPL

I Possible to construct terms of series expansion in different regions using
expansion around singular points [Lee,Smirnov,Smirnov’17]
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Conclusion

1. We have calculated closed three-loop analytical expression for the massive
scalar theory in the broken phase in the broken phase

2. New set of the two-mass three-loop tadpole integrals calculated

3. New set of functions from the iterated integrals class used to represent
results of the calculation and need further investigation
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Thank you for attention!


