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Geometry of space Hj

Three dimensional hyperboloid H} CRj3;

x x=x2=x¢ - (F+x2+x3)=R?

The group of isometry for hyperboloid is SO(3,1) and corresponding Lie algebra is six
dimensional and consists of generators of rotation

L ( 4] 3) L ( 4] 3) L ( 4] 3)
=—i(x——x3— =—i(xs— —xa— =—i(x1— —x2a—
N 2 oxs 2oxe )’ 2 2 oxa Yoxs )’ 3 L oxa 2 0xa

and operators of Lorentz transformation

o o) Ie} Ie} o o
Ky = —i I k=i (e , Ka= =i (xo—— + X
: '( B ‘8x°) 2 ’(°a M ax°> : ’<X°aX3+X3ax°)
with commutation relations
[Li, Lj] = iejuly, [Li, K] = —iejwKy, [Ki, K] = e Kk
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Hamiltonian on H:,} is written as

1
H= _72ALB + V(X) =

R (K2 —12) + V(x)

2R?
L2=12+13+13 KZ=KZ+KZ+K2

where A g is Laplace-Beltrami operator

1 0 K O i
Aig = ﬁaxi \/Eg’kﬁ ds® = g,'kdX’ka

i _ Ox; Ox
g% = (gu)"Y g =det(di) gk = Gup s

0y 08y

(’7k: 1a273)

On H:,} hyperboloid the equivalent of oscillator potential is

w?R? x?
VeI =—F"2
0

and as for integral of motion for the system, it is Demkov tensor

wm+mm+&#“k

D:
ik = 2R2 xR
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For operators L; and Dj, comutation relation are
[Dij, L] = i (€ii Djt + €jkm Dim)

. i
[Dix, D] = i (wz ) (dirLi + SuiLij + SyLw + SjxLin) — SR2 ({L;Di}

4R4

+ {LiDy} + {LjDi} + {LwDy}) Ly = eixjl;

1
ZDikLi = ;LiDik = ﬁLk

We will consider our system in two coordinate systems spherical:
Xo = Rcosh7, x3 = Rsinh7Tsinfcosyp, x2 = RsinhTsinfsiny, x3 = RsinhTcosf

7 € (0,00),0 € [0,7], ¢ € [0,27)

and cylindrical:
Xo = Rcosh Ty cosh7a, x3 = RsinhTicosp, x2 = Rsinh7ising, x3 = RcoshTysinh7z

71 € [0,00), T2 € (—00, 00), ¢ € [0,27)
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A 1{16_h28 1(1 8_98+182)}
= —4——5——sinh“7— — —— —sinf— —
L8~ R2 sinh?7 o7 7 sinh27 \sinh0 99 80 ' sin?6 dp?
Potential 2oo o ) ) -
Vosc: s R Xl +X22+X3 == od R tanhzT
2 x5 2

We achieve the separation of variables by substitution

\/%(sinh )L (T) Y0, ¢)

The £ and m are the eigenvalues of full momenta L and L3. For bound states E < 0
energy spectra is described by

V(r,0,¢;R) =

EN(,/,R):_(N+1)(N+3)+1/+1/2( 3)

N>
2R2 R2 + 2

where N = £+ 2n, < v — 3/2, and we will denote wave function by Wy (7,0, ¢; R).
As for unbound states E > 0 :

E=(w?+1+p%/4)/2R?,pR

with wave function W,,(7,0, ¢; R).
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Cylindrical

1 1 0 ) 3 1 8 1 92
Ap=—-—<¢————coshrysinh7g— + — =% ——
R2 | cosh 7y sinh 7 071 O11 cosh®Ty 873 sinh? 1y 92
Potential 5 oo
w R 1
V(rim) = 1-
(mi72) 2 ( cosh? 1 cosh? 7'2)

We achieve the separation of variables by substitution

1 1 1
W(711,72,¢9; R) = ——(cosh 1)~ 2 (sinh 7)™ 2 f(71)S(m2
( ) \/ﬁ( )2 ( )" 2£(11)5(m2)
For bound states E < 0 energy spectra is the same as above

(N+1)(N+3) v+1/2 3
2R2 TR (N+E)

eim(p
V2T

En(v,R) = —

with N = m+ 2n3 + n2, and we will denote wave function by Wy, ,(7, 8, ¢; R). Needs
mentioning that n» and m are connected to eigen values of D33 and L3. As for
unbound states E > 0 we have the same expected result:

E=(v®+1+4p°/4)/2R* peR

with wave function Wpn,m(7, 6, ¢; R) and Wpym(T, 8, ¢; R)
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Expansion

Expansion for bound states E < 0

N
\Uanm(Tl,Tz,(,D; R) = Z Wnl;.,l?l-’z’;‘r (V)‘UNlm(T’ 97 ®; R)
L=m,m+1

N—m

Ynem(7, 0,0 R) = > (Wi () Wanam(r1, 72,01 R)
n2=0,1

N=m+2n1+n =40+ 2n,

For convenience we will fixate variable 7 — oo which also leads to 71 — oo

™
Whmsnr () = const/ (sin@)N—rat1y
0

nyinam

1 — cosf

> ) P} (cos 6)do

1
x 2F1 (—nz,QV —n,v+ 5~ M
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The answer is described through Racah polynomials

Wi manr (v) = const - Ra(A(x), v, B,7,6) ~ aF3(1)

nynam
H_m_ 1,1 @ _Ntm 3 1 @__N-m 31
X 2 434 p T2 TaTi @ 2 473
@w_t=m 1,1 __1 s — _
5 2 ol + v
N—m 2
2
£,m,n ,m,n * £,m,ns(— ,m,n *
Z Wn1,nz,( )(Wn1,nz, (+)) = b Z Whi,n2,m (Wru,nz, - )> = Ggpr
2=0 2=1

Expansion for unbound states E > 0

As we saw for positive energies we had W, (7, 6, ¢) in spherical coordinates and
Wonam(7T1, 72, ) as well as Wy m(71, 72, 9)

Vorm(T, 0, 0) ZAnz“’pnzM(Tl,Tz,SO) +/B(X)“’pxm(71>72750)dx

n2
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For simlicity let's discuss cylindrical function expansion by sphericalones

\Upnzm(7—177—2790; R) = Z Wﬁfzn;'nwplm(Tv 6790; R)
l=m,m+1

Coefficients are described by Wilson polynomials

W‘f,fz”,',gi) = const \V\/'ni(f(ai + ki)2’ ai’ bi, Ci, d;t)

4 1 1 1 1 1 |
AL 4 kE="2_ 242 ="y P
2 2 4 4 2 4 4 2 2 2
+ v 1 1 + v 1 1 + m 1 ip
T pt=Y 1 52 at="4-_ P
a 2 2:‘:4 2+2:F4 2+2 2
\ngm(Tlr 2, %, R) = Z W;;%“’Zm(ﬂ 0, p; R)
l=m,m+1

Wfﬁ’f%(i) = const W+ (x?, at, bt ct dF)
4 1 X m 1 ip

+ +
= - — — — - + — == ct = — — —
T2 XT3 22t
+ v 1 1 + v 1 1 + m 1 ip
=-Z4-F2 pE=2 4 x> gt="4-_ P
2 2T27%; 2T27%; 2 t272

David Petrosyan 26 anpens 2018 r. AYSS 2018 9 /12



Orthogonality relation for wilson polynomials writes as

oo
/ A YWa(x2, 2, b, ¢, dYWon(:2, 2, b, ¢, d)dx+
0
a+k<0
+ Y B(K\Wa(—(a+k)?,3,b,¢,d)Wm(—(a+ k)2, a,b,c,d) = Cpm
k
which for our coefficients transforms into
n2<uff

Sl ’ *
| Wi (wglr®) ax+ > wan (wher®) =

This allows us to reverse the expansion, and break down spherican functions through
cylindricals.

v > ¢ m(£)\* g
wPZm(ﬂevLP; R):/ (Wlfxmm( )> \prm(7—177'2790FR)dX+

n2<u77

+ Z (wgfzg(i)) Wy (1,72, R)
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Conclusions
® Harmonic oscillator problem on two-sheeted hyperboloid was defined and solved
® Energy spectrum was obtained for bound and unbound states of the system

® |nterbasis expansion was performed fully between spherical and cylindrical
coordinate systems, with coefficients being described through Racah and Wilson
Polynomials
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Thank you for your attention!
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