Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA): status, results and perspectives

A.Borodin for TAIGA collaboration

TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma - Astronomy)

Tunka Valley, Republic Buryatia
- 50 km to west
from Lake Baikal.

The main aim of TAIGA project:

Study of low flux high-energy (>30 TeV)
Gamma rays from Galactic accelerators
with large area array (~10 km²)

TAIGA - collaboration

Germany

Hamburg University(Hamburg)

DESY (Zeuthen)

MPI (Munich)

Italy

Torino University (Torino)

Rumania

ISS (Bucharest)

Russia

MSU(SINP)(Moscow)

ISU (API) (Irkutsk)

INR RAS(Moscow

JINR (Dubna)

MEPHI(Moscow)

IZMIRAN (Moscow)

BINR SB RAS Novosibirsk)

NSU (Novosibirsk)

ASU (Barnaul)

Content of report

- 1. The main results of CR experiments in Tunka Valley
- 2. The procedure and the results of the PMT calibration
- 3. the mirror fabrication and its optical parameter measurements

Why gamma-ray astronomy?

To understand how Cosmic Accelerators work we need to detect cosmic rays, gamma – rays and neutrinos

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

The main idea: A cost effective approach for construction of large areas installation is common operation of wide-field-of-view timing Cherenkov detectors (the *non-imaging technique*) with a few relatively cheap, small-sized imaging Air Cherenkov

Hybrid approach to CR rejection

The first and second IACT today (autumn, 2018)

TAIGA-IACT (the most North telescope)

D = 4.32m F = 4.75m

34 mirrors of 60 cm diameters (

Camera: 560 PMTs (XP 1911) with 15 mm useful diameter of photocathode

Winston cone: 30 mm input size, 15 output size

1 single pixel = 0.36°

FOV diameter ~ 9°

Energy threshold ~1.5 TeV

Camera of the TAIGA-IACT

One of TAIGA high-priority goals: operate 58 HiSCORE stations with the 1st IACT

FIRST EXAMPLE OF HYBRIC "GAMMA-LIKE" EVENT

IACT data

Width=0.13°, length=0.69°, alpha=8.9°, size=709p.e.

Recalculated core position in IACT plane after introduction of scaling factor Rp' = Rp/1500

HiSCORE data

$$E = 55 \text{ TeV}$$

Stand for the PMT calibration and the examples of results

The main view of stand

Gain ratio

Dark current

Optical part manufacturing

bending furnace

furnace

grinding polishing machines in workshop

aluminum mold for mirror polishing

Optics workplace

Control of the mirror Measuring curvature radius. the radius of curvature: accuracy 50 mm

Budva, Becici, "Splendid Hotel"

Surface roughness control

Stand for checking the quality of the surface shape and the radius of the mirror curvature

The first prototypes of mirrors

Plan for 2018-19

100 stations

For 100 hours

3-10⁵ hybrid events (CR mass composition)

50-100 hybrid events from Crab (E ≥.40 TeV)

Thank you

FIRST EXAMPLE OF HYBRID "GAMMA-LIKE" EVENT

IACT data

Width=0.13°, length=0.69°, alpha=8.9°, size=709p.e.

Recalculated core position in IACT plane after introduction of scaling factor Rp' = Rp/1500

HiSCORE data

Efficiency of light collectioning

