

Outline

- Nonthermal production mechanisms
 - Gravitino
 - Classical scalar field
 - Axion
 - Sterile neutrino
- Quiding principles...
- Summary

- Nonthermal production mechanisms
 - Gravitino
 - Classical scalar field
 - Axion
 - Sterile neutrino
- 2 Guiding principles...
- Summary

Astrophysical and cosmological data are in agreement

$$\left(\frac{\dot{a}}{a}\right)^{2} = H^{2}(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$

$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\text{A}}$$

$$ho_{
m radiation} \propto 1/a^4(t) \; , \; \; \rho_{
m matter} \propto 1/a^3(t) \; , \; \; \rho_{
m A} = {
m const}$$

$$\frac{3H_0^2}{8\pi G} = \rho_{
m density}^{
m energy}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \, \frac{
m GeV}{
m cm^3}$$

radiation:
$$\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$$

Baryons (H, He): $\Omega_{\text{B}} \equiv \frac{\rho_{\text{B}}}{\rho_{\text{C}}} = 0.05$ Neutrino: $\Omega_{\text{V}} \equiv \frac{\rho_{\text{B}}}{\rho_{\text{C}}} = 0.01$ Neutrino: $\Omega_{\text{V}} \equiv \frac{\Sigma \rho_{\text{V}_{\text{I}}}}{\rho_{\text{C}}} < 0.01$ N_V $\simeq 3$, Σ m_V $\lesssim 0.2$ eV

Dark matter: $\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{\rho_c} = 0.27$ Dark energy: $\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_c} = 0.68$

Dark Matter: non-thermal production

in the primordial plasma of SM particles
 (via scatterings, oscillations):
 gravitino
 sterile neutrino of 1-50 keV

at phase transitions:

axion of 10⁻⁴ – 10⁻⁷ eV Q-balls strangelets (?)

during reheating (after inflation?):
black holes
any guy coupled (only) to inflaton

perturbatively: inflaton decays production by external (inflaton) field

► non-perturbatively: Bose-enhancement of

coherent production by external field

while the Universe expands:

gravity produces any particles at $H \sim M_X$

6/25

Gravitino production

$$\begin{split} \mathscr{L} &= \frac{1}{F} \partial^{\mu} \psi \cdot J_{\mu}^{SUSY} \;, \quad \tilde{G}_{\mu} \to \tilde{G}_{\mu} + i \sqrt{4\pi} \frac{M_{Pl}}{F} \partial_{\mu} \psi \\ & \qquad \qquad m_{3/2} = \sqrt{\frac{8\pi}{3}} \frac{F}{M_{Pl}} \;\longleftrightarrow \quad \Lambda = 0 \end{split}$$

1 TeV
$$\lesssim \sqrt{F} \lesssim M_{Pl}$$
, $2 \cdot 10^{-4}$ eV $\lesssim m_{3/2} \lesssim M_{Pl}$

LSP in low scale SUSY breaking models

$$2 \cdot 10^{-4} \text{ eV} \lesssim m_{3/2} \lesssim 100 \text{ GeV} \longrightarrow \sqrt{F} \lesssim 10^{10} \text{ GeV}$$

Thermal equilibrium is forbidden

(fermion; would be hot DM):

$$\Omega_{3/2} = \frac{\textit{m}_{3/2} \cdot \textit{n}_{3/2}}{\rho_{\textit{c}}} = 0.2 \left(\frac{\textit{m}_{3/2}}{200\,\text{eV}}\right) \left(\frac{g_{3/2}}{2}\right) \left(\frac{210}{g_*(\textit{T}_d)}\right) \, \frac{1}{2\textit{h}^2}$$

Dmitry Gorbunov (INR)

Gravitino production in scatterings and decays

$$\begin{split} \tilde{X}_{i} \rightarrow \tilde{\mathbf{G}} + X_{i} \,, \quad X_{i} + X_{j} \rightarrow \tilde{X}_{k} + \tilde{\mathbf{G}} \\ \Gamma \propto \frac{1}{F^{2}} \propto \frac{1}{m_{3/2}^{2}} \,, \qquad \sigma \propto \frac{1}{F^{2}} \propto \frac{1}{m_{3/2}^{2}} \\ \frac{dn_{3/2}}{dt} + 3Hn_{3/2} \\ &= \sum_{i} \Gamma_{\tilde{X}_{i}} \cdot \gamma_{i}^{-1} \cdot n_{\tilde{X}_{i}} + \sum_{i,j} \langle \sigma_{ij} \rangle \cdot n_{X_{i}} n_{X_{j}} \,, \\ \frac{d}{dT} \left(\frac{n_{3/2}}{s} \right) = -\sum_{i} \Gamma_{\tilde{X}_{i}} \cdot \frac{n_{\tilde{X}_{i}}}{\gamma_{i} \cdot sHT} - \sum_{i,j} \frac{\langle \sigma_{ij} \rangle \cdot n_{X_{i}} n_{X_{j}}}{sHT} \,, \\ &\propto \frac{1}{T^{3}} \qquad \propto \text{const} \\ \Omega_{3/2} \sim \left(\frac{200 \text{ keV}}{m_{3/2}} \right) \cdot \left(\frac{T_{max}}{10 \text{ TeV}} \right) \\ &\times \left(\frac{M_{S}}{1 \text{ TeV}} \right)^{2} \cdot \left(\frac{15}{\sqrt{a_{i} \left(T_{max} \right)}} \right) \cdot \frac{1}{2h^{2}} \end{split}$$

of a gauge theory at finite temperature

8 / 25

Outcome depends on initial conditions !!!

Dmitry Gorbunov (INR) Dark Matter Models (II) DIAS Summer 2016

Free massive scalar field

$$\mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2}$$

For the homogeneous scalar field in FLRW expanding Universe

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2 \phi = 0$$

we find two-stage evolution:

$$m_{\phi} < H(t) \implies \phi = \phi_i = \text{const}$$
 $m_{\phi} > H(t) \implies \rho = \langle E_k \rangle - \langle E_p \rangle = 0, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3$

- dust-like substance in the late Universe, $\Omega \propto m_{\phi}^{1/2} \phi_i^2$ depends on initial conditions
- presureless at spatial scales $I > 1/m_{\phi}$ fuzzy DM
- may help (?) with CDM-problems (core-cusp, lack of dwarfs, etc)

Dmitry Gorbunov (INR) Dark Matter Models (II) DIAS Summer 2016 9 / 25

Axion: well-motivated but fine-tuned

$$L_{ heta} = rac{lpha_s}{8\pi} \left(heta_0 + ext{Arg} \left(ext{Det} \hat{M}_q
ight)
ight) G^a_{\mu
u} ilde{G}^{\mu
u} \, ^a \equiv rac{lpha_s}{8\pi} \, ^{eta} G^a_{\mu
u} ilde{G}^{\mu
u} \, ^a \equiv \partial_{\mu} K^{\mu}$$

P- CP-violation

tree-level and $U(1)_A$ -anomaly contributions, $\bar{q}_I \hat{M}_a q_B + h.c$

strong CP-problem nonantropic parameter!

Theory and Nature:

neutron EDM

 $\theta < 10^{-9}$

Transformation (PQ-symmetry)

$$q_{\mathsf{L}}^k o \mathrm{e}^{ie_k^{(PQ)}eta/2}q_{\mathsf{L}}^k \ q_{\mathsf{R}}^k o \mathrm{e}^{-ie_k^{(PQ)}eta/2}q_{\mathsf{R}}^k,$$

$$q_{\rm R} \rightarrow {\sf e}^{-N_{\rm R}} \stackrel{P/-}{=} q_{\rm R},$$
 with $\sum_k e_k^{(PQ)} \neq 0$

cancels
$$\theta$$
 with β

$$heta
ightarrow heta + a(x)/f_a$$
 $m_{\mathsf{axion}} \simeq f_\pi m_\pi/f_a$

Dark Matter region

$$\mathcal{L} \sim g_{a\gamma\gamma} \times a(x) F_{\mu\nu} F^{\mu\nu}$$

Dmitry Gorbunov (INR)

Dark Matter Models (II)

DIAS Summer 2016

Axion as Cold Dark Matter

$$heta o ar{ heta}(x) = heta + C_g rac{a(x)}{f_{PO}} \ .$$

Free scalar field starts to evolve at $m \simeq H$

$$\mathscr{L} = \frac{f_{PQ}^2}{2} \cdot \left(\frac{d\bar{\theta}}{dt}\right)^2 - \frac{m_a^2(T)}{2} f_{PQ}^2 \bar{\theta}^2 \,,$$

Temperature-dependent mass-term

$$m_a(T) \simeq 0.1 \cdot m_a(0) \cdot \left(\frac{\Lambda_{QCD}}{T}\right)^{3.7} , \quad T > \Lambda_{QCD}$$

$$\Omega_a \simeq 0.2 \cdot \bar{\theta}_i^2 \cdot \left(\frac{4 \cdot 10^{-6} \text{ eV}}{m_a}\right)^{1.2} \cdot \frac{1}{2h^2}$$

- initial conditions
- instantons vs lattice
- domain walls, axion clumps, etc

Sterile neutrino: well-motivated Dark Matter

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial \hspace{-.1cm}/ N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

massive fermions giving mass to active neutrino through mixing

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

unstable, but exceeding the age of the Universe at condition

$$\theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \,\text{keV}}{M_N} \right)^5$$

can be searched for because of two-body radiative decay

ЙŘ

Production in oscillations

$$rac{\partial}{\partial t} f_{s} - H \mathbf{p} \, rac{\partial}{\partial \mathbf{p}} f_{s} = \Gamma_{lpha} \, P(v_{lpha}
ightarrow v_{s}) \, f_{lpha}(t,\mathbf{p}) \, .$$

where $\Gamma_{\alpha} \sim G_F^2 T^4 E$ is the weak interaction rate in plasma

$$\begin{split} &P(v_{\alpha} \rightarrow v_{s}) = \sin^{2}2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2}\left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right), \\ &t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2}2\theta_{\alpha} + (\cos2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}}, \\ &\sin2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin2\theta_{\alpha}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}} \end{split}$$

and effective plasma potential for active neutrinos

$$V_{lphalpha}\sim -\#G_F^2T^4E+\#G_FT^2\mu_{L_lpha}$$

resonant production in the lepton asymmetric plasma

BAU-DM connection?

Dmitry Gorbunov (INR) Dark Matter Models (II) DIAS Summer 2016 13 / 25

Sterile neutrino Dark Matter

 $\sin^2 2\theta, \, n_{v_e} \text{ and } M_N$ to saturate Ω_{DM}

- larger asymmetry $10^6 n_{v_e}/s > 2500$ is forbidden by BBN
- above the solid line "0.0" $\Omega_N > \Omega_{DM}$
- selected upper limits from X-ray telescopes
- recall m > 0.75 keV for fermionic DM
 It can be refined with estimates of neutrino velocities

Sterile neutrino Dark Matter

A.Schneider (2016)

Sterile neutrino Dark Matter: ... gone?

A.Schneider (2016)

brown: MW satellite counts green and yellow: Lyman- α

production by inflaton

Outline

- Nonthermal production mechanisms
 - Gravitino
 - Classical scalar field
 - Axion
 - Sterile neutrino
- Quiding principles...
- Summary

Dark Matter: possible guiding principles

Naturality:

exploit known interactions

examples: WIMPs, free particles

 part of a well-motivated model

examples: LSP, axion, sterile neutrinos

• Why $\Omega_B \sim \Omega_{DM}$? examples: Mirror World antibaryonic DM

• Why $\Omega_{\Lambda} \sim \Omega_{DM}$? examples:

DM-DE coupling

Minimality:

Use as little new physics as possible

Motivation:

No any hints of new physics in experiment

Many models are

untestable

example:

gravitationally produced

free massive fermion

Reality:

Deep insight into the gravitational properties of dark matter

what happen

at small scales?

status of:

cusp/core in galactic centers lack of dwarf galaxies lack of small galaxies

examples:

cold dark matter warm dark matter selfinteracting dark matter

Examples: both Natural and Minimal

Natural source of dark matter production: gravity

Gravity produces any free massive particle when metric changes in the expanding Universe

most efficiently when $H \sim M$

say, at radiation domination stage

$$\Omega_{X} \sim \left(\frac{\textit{M}_{X}}{10^{9}\, \text{GeV}} \right)^{5/2}$$

S.Mamaev, V.Mostepanenko, A.Starobinsky (1976)

Modified gravity $(R \rightarrow R - R^2/6\mu^2)$ may be responsible for inflation and subsequent reheating

A.Starobinsky (1980)

that is (universal) production of all particles, including those of dark matter

$$\Omega_X \simeq 0.15 imes \left(rac{ extit{M}_X}{10^7 extrm{GeV}}
ight)^3$$

D.Gorbunov, A.Panin (2010)

Untestable

$$\begin{split} V_S &= \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \frac{\lambda_{hS}}{\lambda_{hS}} S^2 H^\dagger H \\ m_S &= \sqrt{\mu_S^2 + \frac{1}{2} \lambda_{hS} v^2} \\ \Omega_S &\propto m_S n_S \propto \frac{1}{\sigma_{ann}} \propto \frac{m_S^2}{\lambda_{hS}^2} \end{split}$$

indirect:

$$flux(SS \rightarrow SM) \propto n_S^2 \sigma_{ann} \propto \frac{1}{\lambda_{bS}^2}$$

direct:

$$\Gamma(SA \to SA) \propto n_S \sigma_{ann} \propto \frac{1}{m_S}$$

- EW phase transition of I order?
- EW vacuum stability ?

Constraints on scalar Dark Matter

Discussion on WIMPs

Most natural properties:

- to be in equilibrium in primordial plasma up to very freezout (and in kinetic equilibrium even later)
- to form a symmetric component:

$$X = \bar{X}$$
 or $n_X = n_{\bar{X}}$

But what we have in reality?

- We are sure there were
 - Big Bang Nucleosynthesis (starting from 1 MeV)
 - Recombination (at about 0.3 eV)

and both are significantly "out-of-equilibrium" processes

 The visible matter is asymmetric, so that

$$f \neq \overline{f}$$
 and $n_f = n_{\overline{f}}$

Asymmetric Dark Matter

Sakahrov's conditions are involved !!!

- Two different quantum numbers work in two different (dark and visible) sectors Then a mechanism similar to baryogenesis is responsible for DM
- production
- A single quantum number is responsible for both asymmetries
 - Non-zero total asymmetry
 - Generation of the asymmetry
 - Redistribution of the asymmetry between two Worlds
 - The Universe is neutral.
 - Simutanaous production of particles in one sector and antiparticles in another
 - Annihilation of the symmetric parts of charged particles in the both sectors

Baryon or lepton numbers can be naturally exploited!

Different (as compared to WIMPs) phenomenological signatures

Dmitry Gorbunov (INR) Dark Matter Models (II)

23 / 25

Outline

- Nonthermal production mechanisms
 - Gravitino
 - Classical scalar field
 - Axion
 - Sterile neutrino
- 2 Guiding principles...
- Summary

Summary (II)

- A lot of models with nonthermal DM production
- Outcome generally depends on initial conditions
- Before BBN epoch everything is allowed
- DM may be multicomponent
- DM perturbations are adiabatic

