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Fitting by Orthonormal Polynomials
of Silver Nanoparticles Spectroscopic Data
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Our original Orthonormal Polynomial Expansion Method (OPEM) [1]
in one-dimensional version is applied for first time to describe the silver
nanoparticles spectroscopic data. The experimental errors in variables
shown by experimentalists are included in weights for approximation -
different in every point. In this way we construct orthogonal (orthonor-
mal ) polynomials for presenting the curve. The corridors of given data
by the help of the weights define the optimal behavior of searched curve.
We have received four curves in thousands points for analysis. We have
chosen one subinterval in one of them.

This study describes the Ag nanoparticles produced by laser ap-
proach in a ZnO medium forming a AgNPs/ZnO nanocomposite
heterostructure. The most important subinterval of spectra data is in-
vestigated, where the minimum (Surface Plasmon resonance absorption)
is looking for. We hope that with our description we target the experi-
mental work in regular direction.
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1. INTRODUCTION
The metal nanostructures have attracted considerable at-
tention due to their optical properties. It is related to
the efficient excitation of collective electron oscillations,
plasmons, which define the particle response to external
electromagnetic field. The resonant frequency of these
oscillations usually falls in deep UV spectral region. For
some metals, as silver, the plasmon resonance is real-
ized in the near UV or visible spectral range. This makes
these metals good candidates for resonance plasmon exci-
tation sources and for utilizing their properties in the re-
gion where commercially available coherent lights sources
work [2]. The efficient plasmon excitation shows a dras-
tic enhancement of heir extinction coefficients. These
unique properties of metal nanoparticles are used in de-
velopment of different techniques and systems for applica-
tions in optical, electronic, catalytic, sensing and biomed-
ical devices [4, 5, 6].
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Fig. 1: Experimental curves
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Fig. 2: SEM images of Ag/ZnO after and before nanos-
tructuring
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The laser annealing leads to decomposition of the layer
into nanoparticles by dewetting mechanism [3]. The evo-
lution of the dewetting process is a function of the thin
film composition and dictates the size distribution and
spacing of the nanoparticles.

The practical applications and the properties of nanos-
tructures of noble metals are strictly related to the mate-
rial in which they are embedded, and a number of stud-
ies focus on developing methods for preparing composite
materials containing nanoparticles. The NPs incorpora-
tion into dielectric or semiconductor matrices can lead to
the emergence of new features with composite materials
showing properties different from those of the individual
components [6, 7, 8, 9]. The application of methods for
precise study of the resonance absorption band position
and shifting of noble metal nanoparticles is of particular
interest.
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2. PHYSICAL DATA
The silver nanoparticles are produced by pulsed laser de-
position (PLD) on quartz substrates SiO2 (001) in a vac-
uum chamber. The films are deposited by a Nd:YAG (
355 nm, =18 ns, =10 Hz) at laser fluence of F = 1.5 J/cm2
at room temperature. The films are post-deposition an-
nealed for surface nanostructuring by laser-induced de-
composition of the film into nanoparticles with diameters
in the range of few tens of nanometers. The deposited
films are laser annealed in air by the same laser system
with a fluence of 200 mJ/cm2. The transmission spec-
trum of the Ag nanoparticles was analyzed using a UV-
VIS spectrometer (HR 4000 Ocean optics) in the range
of 220 - 800 nm.
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We have chosen one subinterval in one of them with
M = 94 points and λ in [468.9,493.2]. The selected curve
corresponds to the transmission spectrum of AgNPs af-
ter the annealing by 10 laser pulses. The lower number
of pulses smaller than 5 leads to incomplete decomposi-
tion of the layer into nanoparticles. The laser annealing
is performed at different number of laser pulses (1, 5 and
10) but at the same laser fluence. For more detailed ap-
proximation( for test) we have taken the smaller interval
with M = 50 points in the above one with λ in [468.9, 481.7].
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3. MOTIVATION AND PROBLEM DEFINITION

• To find the best approximation curve T appr of measured
data T on Fig 1, including errors in variables;

• To extend our original Orthonormal polynomial ex-
pansion method (OPEM), according some criteria, to
evaluate orthonormal description of given data.
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4.Mathematical approach
Here one defines new variance at i − th given point

(λi, Ti), i = 1, 2, ...M , following [11] Bevington 1 and [12] G.
Jones 2, using expression

S2
i = σTi

2 + (
∂Ti
∂λi

)2σλi
2. (1)

In the formula (1) the Bevington’s (1969) [11] proposal
to combine both variable uncertainties and assign them
to dependent variable is used. The so called method is
OPEM total(effective) variance method.

1 P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGrow-
Hill, New York, 1969).

2G. Jones, Least Square Fitting when Both Variables have Errors, Preprint TRI-PP-92-31
A, 1992
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The generalized OPEM

Our principal relation for one-dimensional generation of
orthonormal polynomials by Forsythe [13] 3 {P (0)

i , i = 1, 2, . . .}
and their derivatives {P (m)

i ,m = 1, 2, . . .}, in arbitrary dis-
crete point set in OPEM is:

P
(m)
i+1 (E) = 1/νi+1[(T−µi+1)P

(m)
i (λ)−(1−δi0)νiP (m)

i−1 (λ)+mP
(m−1)
i (λ)].

(2)
The generalization of Forsythe procedure in one-dimensional
case is with involving arbitrary weights in every points,
evaluating derivatives (m > 0) or integrals ( m < 0) and
normalizing polynomials. Here the normalization coeffi-
cient 1/νi and the recurrence coefficients µi, νi are given as
scalar products of the polynomials in the given data in
M points [14]4 in our earlier paper. We developed some

features of our algorithm. One can generate P
(m)
i (λ) re-

cursively. The polynomials satisfy the following orthonor-
3G. Forsythe, J. Soc.Ind. Appl. Math. 5, 74 (1957).
4V.Gadjokov, N. Bogdanova, Commun.JINR, P11-12860, 1979.



D
ra

ft

14/32

JJ
II
J
I

Back

Close

mality relations

M∑
i=1

wiP
(0)
k (λi)P

(0)
l (λi) = δk,l

over the discrete point set {λi, i = 1, 2, . . .} where wi =
1/(σ2

Ti
) are the corresponding weights. The coefficient ma-

trix in the least square method becomes an identity ma-
trix and due to orthogonality conditions the coefficients
ak in

T appr(m)(λ) =
L∑
k=0

akP
(m)
k (λ) (3)

are easily computed by

ak =
M∑
i=1

TiwiP
(m)
k (λi). (4)

The approximation function T ap is constructed as follows
with orthonormal ak and usual coefficients ck:
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The inherited errors in usual coefficients are given by
the inherited errors in orthonormal coefficients:

∆cj = (
L∑
i=j

(c
(i)
j )2)1/2∆ai, j = 0, 1, 2..., L (5)

And the inherited errors in orthonormal coefficients are
expressed by:

∆ai = [
M∑
k=1

P 2
i (λk)wk(Tk − T appr

k )2]1/2, i = 0, ..., L. (6)
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It is worth noting the following advantages of OPEM:
a) It avoids recomputing the coefficients in eq.(6)- for
evaluating approximation with higher degree polynomi-
als we use unchanged the coefficients of the lower-order
polynomials. b) it avoids the procedure of inversion of the
coefficient matrix to obtain the solution and this shortens
the computing time. For appropriate classes of examples
this diminishes the number of iterations required to reach
a prescribed numerical precision.
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The development now is carried out to decide the ap-
proximation task with errors in variables. Two criteria
are used here to select the optimum series length in equa-
tion (3).

First criterion (i) Here one neglects the errors in λ vari-
able, the graph of the fitting curve lies inside the ”old”
error corridor [T − σ, T + σ].

(ii) After calculating the derivatives at any point λi us-
ing equations (1),(2),(3),(4) the fitting curve has to lie
inside the total error corridor [T − S, T + S].

Second criterion We extend the above algorithm to in-
clude S2

i in OPEM in two stages:
(i). i.e. the following χ2 is minimized

χ2 =
M∑
i=1

wi[T
ap(λi)− T (λi)]

2/(M − L− 1),

where the weights are wi = 1/σ2
Ti
.
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(ii): The next approximation is calculated with the
weight function wi = 1/S2

i .
The results of calculations in (i) gives the first approx-

imation. The procedure is iterative and the result of the
consequent kit-th iteration, kit > 1, is called below the kit-
th approximation. The preference is given to the first cri-
terion and when it is satisfied, the search for the minimal
chi-squared stops. Based on the above features the algo-
rithm selects the optimal solution for a given set {T, λ}.
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Criterion for usual expansion After evaluating an opti-
mal number of polynomials in orthonormal expansion we
find the best result of usual expansion for every step of
iteration by minimization of:

max|T appr
a − T appr

c | = maxMi=1|T appr
a (λi)− T appr

c (λi)|
Now the algorithm is called total (effective) OPEM [15,
16, 17, 18, 19, 20].
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5.Approximation results
• A.Mathematical analysis

The main approximation results are given in Table
1. and Figures. We have used one subinterval with
M = 94 points around supposed minimum of T and
other subinterval with M = 50 points in it. Here we
present the approximation with orthonormal coeffi-
cients. We tried to use 2 different type of weights.
The table shows the results with : number of points
M, optimal number of degrees of polynomials L,

√
χ2,

maximal deviation between given and approximated
values max|T appr − T |, λ[nm] at max|T appr − T |, and the
most interesting results: Tmin and the corresponding
λ(Tmin). The best results are in bigger subinterval

– in second row with T appr
min = 60.32 and

√
χ2 = 0.23 in 481

nm (54-th point) at L = 2 number of degrees (fig. 4).
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– and third row with T appr
min = 59.85 and

√
χ2 = 0.24 in

485 nm ( 65-th point) at L = 3 number of degrees
(fig. 3).
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Table 1: OPEM approximations results for different given subintervals

M L
√
χ2 W max|T ap − T | λ(max |T ap − T |) T ap

min λ(T ap
min)

50 2 0.12 103/T 2 0.57 481. 59.67 473.
94 2 0.23 103/T 2 0.84 474. 60.32 481.
94 3 0.24 1. 0.73 493. 59.85 485.
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Fig. 3: Experimental data T (black) and OPEM approximated T appr

(red) by equal weghts and L = 3
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]

Fig. 4: Experimental data T (black) and OPEM approximated T appr

(red) and L = 2
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• B.Physical analysis
The nanostructured samples exhibit clearly pronounced surface plas-
mon absorption. The transmission spectrum on Fig. 1 exhibits a
minimum at about 490 nm. The Ag nanoparticles with a mean size
of 30 nm and size distribution in the range of (15-75) are described
in this work. The optical properties of AgNPs in ZnO environment
are studied. The PLD grown thin film is transformed to a discontin-
uous structure consisted of small particles at certain laser fluence.
These transformations are governed by seeds coming from the grains
boundaries of the polycrystalline thin film. The small metal islands
become in liquid phase with increasing of the incident energy. The
shape of the formed particles at this stage is quasi-spherical. The
laser annealing with different number of laser pulses, reveals the ac-
tivation of different mechanisms, as the thermal behavior and struc-
ture variation of the nanostructures differ from conventional thermal
annealing treatments and can be controlled by the laser parameters.
An unusual island motion has been observed under the action of sub-
sequent laser pulses (5). The morphology of the samples annealed
at 1 laser pulse show the same morphology as the as-grown films.
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The layers morphology changes significantly with the number of laser
pulses. The shape of the formed particles at 10 laser pulses is quasi-
spherical. The laser annealing of layers in ZnO medium shifts the
absorption band towards longer wavelengths (red-shift) with respect
to the as-grown films and to the air surrounded medium. Changes
in resonance absorption are usually associated with changes in size,
shape and interparticle distances, as well as with the dielectric con-
stant of the surrounded medium [4-10].
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6.Main Conclusions
• The all main results given in table and figures show smooth approx-

imation with second and third number of degrees of polynomials.

• The results, given in table 1 and figures 3. and 4., show the T appr
min

is in λ = 481.nm and λ = 485.nm ( 54-th and 65-th numbers of
points ) respectively by two approaches.

• The present version of total OPEM approximation gives good re-
sults for further interpretations and comparisons in laser produced
nanoparticles .
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Thank you for your attention!
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