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Abstract

We make new simulations of SU(2) zero spatial
momentum (ZM) gluon correlator paying special
attention to possible lattice artefacts and Gribov
copy effect. In particular we started investigation of
the correlator dependence on the choice of boundary
conditions by comparing results for periodic and zero-
field (ZF) boundary conditions at various β values.
Time behaviour of the correlators (at least for ZF
b.c.) corresponds to constant in time effective gluon
mass thus providing additional evidence in favour of
decoupling behaviour of momentum-dependent gluon
propagator in the IR region. We have found that
at fixed lattice sizes and β values the ZM gluon
correlator for periodic and ZF boundary conditions
can differ considerably.



Motivation and Methods

• Propagators in the infrared (IR) momentum region
require nonperturbative approaches

• IR behaviour of propagators is important
for theoretical description of confinement and
spontaneous breakdown of chiral symmetry

• Nonperturbative studies of Landau gauge gluon
and ghost propagators
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with continuum Dyson-Schwinger (DS) or Funct.
Renorm. Group (FRG) Eqs. need external input,
this input can be provided by the lattice approach



Scaling vs Decoupling

• to solve DS or FRG infinite sets of equations
simplifying assumptions and truncations are
needed. First scaling solution was found and later,
due to evidence from lattice results, decoupling
solution was descovered.
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Figure 1: Dyson-Schwinger: decoupling solution for
the gluon propagator and ghost dressing function.
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Figure 2: Dyson-Schwinger: scaling solution for the
gluon propagator and ghost dressing function.
(see C.Fisher. 0810.2526v1)



Lattice approach

• Is based on first principles,

• has its own problems

Gauge fixing has specific serious problem: Gribov
ambiguity due to appearance of so-called Gribov
copies.

• Our strategy was: to look for the Gribov copy
realizing the global extremum of the gauge
functional (or the value very close to it).

• To this end we applied the powerful method of
optimization: SIMULATED ANNEALING. Thus
we found a good practical solution of the Gribov
problem.

• To penetrate into deep IR region of q2 we had
to use huge lattices: L4 = 964 for SU(3) and
L4 = 1284 for SU(2),

• which has required large-scale simulations on
powerful supercomputers. We created first
parallelized code for lattice gauge fixing.



Gauge fixing: SA+OR

In order to fix the Landau gauge we apply a
gauge transformation g(x) to link variables Ux,µ ∈
SU(3) or SU(2)) such that the gauge functional
is maximized

FU [g] =
∑

x,µ

1

Nc

ReTr gUx,µ .

⇒ For Aµ(x+µ̂/2) := (1/2ig0)
(

Ux,µ − U †
x,µ

)

traceless

this is equivalent to ∆µAµ = 0 ,
⇒ but not unique: Gribov copies (local extrema)
⇒ search for global extrema -
for this search we use Simulated Annealing (SA),
finalized by Overrelaxation (OR) steps.

– SA is a “stochastic optimization method” –
here with the statistical weight W [g] ∝
exp{FU [g]/T} –
allowing quasi-equilibrium tunneling through
functional barriers, in the course of a
”temperature” T decrease.

– In principle - with infinitely slow cooling down -
it allows to reach global extrema.



Why ZM-correlator again ?

• To start consideration of this issue we turn
to simulations of zero spatial momentum gluon
correlator, which has been studied first by
Mandula and Ogilvie ’1987’ under PBCs in
SU(3) gluodynamics and later by other groups
(e.g.,Gupta et al ’87’, Bernard et al ’93’).

• From decay of their gluon data the hypothesis
of nonzero gluon mass m(t) arises, but their
”effective masses”m(t) differ considerably from
being constant in t. It can be due either to Gribov
ambiguity, or to the choice of PBCs (or to both).

• Gribov copy problem for lattice gauge fixing
has found good practical solutions by means
of using the Simulation Annealing (SA) method
(Bogolubsky et al ’06-09’).

• Investigation of alternative BCs can prove to be
of importance for investigation of propagators and
even lead to qualitatively new results, because
PBCs introduce some apriori restrictions on
possible solutions.

• An interesting question is: how could conclusions
on ”massiveness” of gluon change when other
types of BCs are used.



ZM gluon correlator, ZF BCs

by applying very long SA procedure followed by OR
local extremization. This allows us to reach the
FMR region, or, in other words, to reach regionWe
study behaviour in Euclidean time of zero spatial
momentum correlator

S(t) =
∑

~x

∑

i=1,2,3

Tr 〈Ai(t, ~x)Ai(0, ~x)〉

and of the correlator T (t)

T (t) =
∑

~x

Tr 〈A0(t, ~x)A0(0, ~x)〉

in the Landau gauge on lattices L3
s ∗ Lt, Lt = 2Ls

(mainly), with Ls = 10, 12, 14, 16, 18; our maximal
lattice extension was 223 ∗ 30. In the first series of
simulations we use zero-field boundary conditions
(ZF BCs), and make high-statistics Monte-Carlo
simulations on lattices L3

s ∗ (2Ls) with various Ls.
The typical number of MC configurations was of
order 104 with one gauge fixed copy obtained for
each MC configurations

being very close to global extremum of the gauge
functional GF . The correlator function T (t) is
constant in t with very high accuracy, which can
show reliability of the results. The varying correlator
function S(t) is plotted in Fig. 1.
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Figure 3: The ZM gluon propagator S(t) for β = 2.6,
ZF BCs and various lattice
sizes .

• Note that for all lattice extensions dependence
ln S(t) is close to linear, resulting in constant in
time t “effective mass”.



ZM gluon correlator, ZFBC vs PBC

• The question is: whether change of boundary
conditions type can lead to essential/qualitative
difference of ZM gluon correlator?

We simulate ZM S(t) on lattice L3
s ∗ Lt, Lt =

2 ∗ Ls with Ls = 12 both for periodic BCs (at
β = 2.2, 2.3, 2.4, 2.5, 2.6) and zero-field BCs (at
β = 2.2, 2.3, 2.4, 2.5). Surprisingly enough, the
results can differ considerably, see Fig.2.
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Figure 4: Comparison of the ZM gluon correlator
S(t) for zero-field and periodic BCs, Ls = 12 and
various β.



• Note that difference of correlator S(t) for periodic
and zero-field BCs grows with β increase,
becoming considerable at β = 2.5.

• One can see exponential decay of S(t) for both
types of boudary conditions.



Effective mass, ZFBC vs PBC

By fitting curves for correlators S(t) we extract gluon
effective masses m(t)
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Figure 5: Comparison of effective masses m(t) for
zero-field and periodic BCs, for various Ls and Lt at
β = 2.6.

• One can see that m(t) curves for both types
of boudary conditions get closer with growing of
lattice sizes Ls and Lt. For both types of BCs
effective gluon mass is nonzero!



Conclusions and Questions

• Nonzero gluon ”effective mass” confirmed both
for ZF BCs and PBCs with Gribov problem
removed gives additional arguments in favour of
nonzero effective mass of momentum-dependent
propagator, having been found for ”decoupling”
solution.

• Now existence of nonzero effective gluon mass is
firmly established.

• Appearance of nonzero effective mass is an
essentially nonperturbative effect and seems
to be closely related with the “dimensional
transmutation” and existence of massive glueball
states. Note, however, that the “mass scale”
within QCD is chosen by comparison with
experiment data.

• Perhaps it is not a bad idea to call similar
massive localized gluon states “quantum solitons”
assuming their “collective” nature. This is an
interesting question of great potential importance
for further theoretical studies.
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