$Z_N$ symmetry in $SU(N)$ gauge theories

12 Oct 2021, 11:45
15m
https://jinr.webex.com/jinr/j.php?MTID=meb12aaca113321b28f8c123868a1ac0f

https://jinr.webex.com/jinr/j.php?MTID=meb12aaca113321b28f8c123868a1ac0f

Oral Theoretical Physics Theoretical Physics

Speaker

Mr Sabiar Shaikh (The Institute of Mathematical Sciences, Chennai, India)

Description

Abstract: We study $Z_N$ symmetry in $SU(N)$ gauge theories in the presence of matter fields in the fundamental representation. To understand the $Z_N$ symmetry explicit breaking analytically we have considered a simple temporal one dimensional model which results from considering fields which are uniform in the spatial directions and the gauge fields with vanishing spatial components. To derive the free energy corresponding to the Polyakov loop, the partition function is evaluated for a given background of temporal gauge links where all the gauge links in the temporal direction are set to unity except the last link. The matter fields are then integrated out sequentially except for the two fields which are connected to the last link. We show that in the limit of large number of temporal sites the resulting free energy is independent of the $Z_N$ explicit breaking term i.e the explicit breaking of $Z_N$ symmetry vanishes, driven by dominance of the density of states. The present calculations leave out the effect of the spatial links and non-zero spatial modes of the matter fields. These modes are responsible for the Higgs and the chiral transitions, which are entropy driven. We argue that the spatial links as well as the spatial modes of the matter fields determine the boundaries separating regions where $Z_N$ symmetry is realised from the rest.

Primary authors

Mr Sabiar Shaikh (The Institute of Mathematical Sciences, Chennai, India) Prof. Sanatan Digal (The Institute of Mathematical Sciences, Chennai, India) Dr Minati Biswal (Indian Institute of Science Education and Research, Mohali, India) Mr Vinod Mamale (The Institute of Mathematical Sciences, Chennai, India)

Presentation materials