Speaker
Description
\documentclass{article}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[dvips]{graphicx}
\begin{document}
\begin{center}
\textbf{RADIATION CORRECTIONS TO PROMPT PHOTON PRODUCTION IN
COMPTON SCATTERING OF QUARK-GLUON }$qg\to q\gamma $ \textbf{AND ANNIHILATION OF
QUARK-ANTIQUARK PAIR }$q\bar{q}\to g\gamma $\textbf{PROCESSES }
\textbf{}
\textbf{M.R. ALIZADA}
\textbf{}
\textit{Department of Theoretical Physics, Baku State University}
\textit{str. Z.Khalilov, 23, Az-1148 Baku, Azerbaijan E-mail: }
mohsunalizade@gmail.com\textit{}
\end{center}
Radiation corrections to processes of Compton scattering of quark-gluon:
1. $q\gamma \to q\gamma $, 2. $q\gamma \to qg$, 3. $g\gamma \to q\bar{q}$,
4. $q\gamma \to qg\gamma $, 5. $qg\to g\gamma \gamma $, 6. $qg\to qg\gamma $ and
7. $g\gamma \to q\bar{q}\gamma $ and annihilation of quark-antquark pair:
1. $q\bar{q}\to \gamma \gamma $, 2. $q\bar{q}\to q\bar{q}\gamma $,
3. $q\bar{q}\to g\gamma \gamma $ and 4. $q\bar{q}\to gg\gamma $ without and
with taking into account of polarization of quark was considered.
Dependencies of differential cross section of subprocesses on energy
of colliding protons $\sqrt{s} $, transverse momentum $p_T$, cosine of
scattering angle \textit{cos($\theta $)} and \textit{y} of photons,
$x_T$ were investigated.
Differential cross section of considered subprocesses decreases as the
transverse momentum increases. The following results were obtained:
$\frac{d\sigma _{1} }{dydp_{T}^{2} } $\textit{$>$}$\frac{d\sigma _{2} }
{dydp_{T}^{2} } $\textit{$>$}\ $\frac{d\sigma _{3} }{dydp_{T}^{2} } $ and
\textit{ }$\frac{d\sigma _{4} }{dydp_{T}^{2} } $\textit{$>$}$\frac{d\sigma _{5} }
{dydp_{T}^{2} } $\textit{$>$}$\frac{d\sigma _{6} }{dydp_{T}^{2} } $\textit{$>$}
$\frac{d\sigma _{7} }{dydp_{T}^{2} } $\textit{ }for\textit{ }
Compton scattering process and $\frac{d\sigma _{2} }{dydp_{T}^{2} }
$\textit{$>$ }$\frac{d\sigma _{3} }{dydp_{T}^{2} } $\textit{$>$}$\frac{d\sigma _{4} }
{dydp_{T}^{2} } $\textit{ }for\textit{ }annihilation of quark-antiquark pair process.
It was been determined that, contributions of corrections to differential cross
section of Compton scattering of quark-gluon process is significant than
contributions of corrections to differential cross section of annihilation
of quark-antquark pair process.
The doublespin asymmetry ${A_{LL}}$ of subprocesses $q\bar{q}\to \gamma \gamma $,
$q\bar{q}\to g\gamma \gamma $ and $q\bar{q}\to gg\gamma $ of annihilation process
are independent of $\sqrt{s} $, $p_T$ and \textit{cos($\theta $)}.
The doublespin asymmetry expression for these subprocesses is as follows
$A_{LL} =-\lambda _{1} \lambda _{2} $. Doublespin asymmetry ${A_{LL}}$ of
subprocess $q\bar{q}\to q\bar{q}\gamma $ of annihilation process increases
(decreases) with increasing transverse momentum for \textit{$\lambda_1 \lambda_2 $ }$
<$0 (\textit{$\lambda_1 \lambda_2 $}$>$0) and reach plateu at certain $p_T$.
The value of this $p_T$ increases with increasing of absolute value of
\textit{$\lambda_1 $ $\lambda_2 $}.
\end{document}