22–24 Nov 2023
Europe/Moscow timezone

Monte Carlo simulation studies of radiation induced damage at cellular and sub-cellular level

23 Nov 2023, 10:45
15m

Speaker

Dr Miloš Đorđević (Vinča Nuclear Research Institute)

Description

In present days, it is of a great interest to further understand the impact of various radiation types on living beings, at cellular and sub-cellular (DNA) level, for the purpose of radiation protection and radiation therapy. Hadronic particles such as protons, carbon ions, and lately helium ions, have various advantages in regards to previous, conventional cancer therapies using photon beams. The number of hadron therapy facilities in the world is rising rapidly, with more than 250,000 patients having received treatment with proton and carbon ion beams. To study the radiobiological effects of ionizing radiation on cells, Monte Carlo simulations that can reproduce and evaluate radiation damage are mandatory. Several track structure Monte Carlo codes exist, however a few of them are openly available to users. The Geant4-DNA software package is publicly available to the user community. The newly released example application molecularDNA, part of Geant4-DNA and publicly available since December 2022, will be presented. This application enables simulations of realistic cancer cell geometries combined with modelling of physical, physico-chemical and chemical stages of cell irradiation, including also radiolythic processes, to give prediction of direct and indirect DNA damage. In the context of future hadron therapу, the benefits of using helium ions will be discussed, as well as other treatment options.

References
[1] K. Chatzipapas, M. Dordevic, S. Zivkovic, N. H. Tran, N. Lampe, D. Sakata, I. Petrovic, A. Ristic-Fira, W.-G. Shin, S. Zein, J. M.C. Brown, I. Kyriakou, D. Emfietzoglou, S. Guatelli, S. Incerti, Geant4 simulation of human cancer cells irradiation with helium ion beams, Phys. Med. Eur. J. Med. Phys. 112, 102613 (2023)
[2] K. Chatzipapas, N. H. Tran, M. Dordevic, S. Zivkovic, S. Zein, W.-G. Shin, D. Sakata, N. Lampe, J. M. Brown, A. Ristic-Fira, I. Petrovic, I. Kyriakou, D. Emfietzoglou, S. Guatelli, S. Incerti, Simulation of DNA damage using Geant4-DNA: an overview of the ”molecularDNA” example application, Precis. Radiat. Oncol., 7, 4 (2023).
[3] D. Sakata, R. Hirayama, W.-G. Shin, M. Belli, M. A. Tabocchini, R. D. Stewart, O. Belov, M. A. Bernal, M.-C. Bordage, J. M.C. Brown, M. Dordevic, D. Emfietzoglou, Z. Francis, S. Guatelli, T. Inaniwa, V. Ivanchenko, M. Karamitros, I. Kyriakou, N. Lampe, Z. Li, S. Meylan, C. Michelet, P. Nieminen, Y. Perrot, I. Petrovic, J. Ramos-Mendez, A. Ristic-Fira, G. Santin, J. Schuemann, H. N. Tran, C. Villagrasa, S. Incerti, Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA, Phys. Med. 105 102508 (2023).
[4] W.-G. Shin, D. Sakata, N. Lampe, O. Belov, N. H. Tran, I. Petrovic, A. Ristic-Fira, M. Dordevic, M. A. Bernal, M.-C. Bordage, Z. Francis, I. Kyriakou, Y. Perrot, T. Sasaki, C. Villagrasa, S. Guatelli, V. Breton, D. Emfietzoglou, S. Incerti, A Geant4-DNA evaluation of radiation-induced DNA damage on a human fibroblast, Cancers 13, 4940 (2021).

Primary author

Dr Miloš Đorđević (Vinča Nuclear Research Institute)

Presentation materials

There are no materials yet.