Speaker
Description
Over the last few decades, significant progress has been made in the study of the $g$ factor of highly charged ions [1,2]. To date, the experimental accuracy for hydrogen-, lithium- and boron-like ions has reached values in the range of $10^{-9}$ - $10^{-11}$ [3-7]. These studies have provided the most precise value of the electron mass [8, 9]. Additionally, by measuring the $g$ factor of light and heavy highly charged ions, it is possible to determine the value of the fine structure constant, extract nuclear parameters, and explore potential new physics [10-12].
In our investigation, the interelectronic interaction correction to the $g$ factor of ions with the low nuclear charge number $Z$ are investigated for the Coulomb and various screening potentials.
Within the framework of bound-state QED perturbation theory, the contribution of the interelectronic interaction $\Delta g_{\text{int}}$ can be written as a 1/$Z$-parameter expansion:
\begin{equation}
\Delta g_{\text{int}}=(\alpha Z)^2\left[ \frac{1}{Z}B_1(\alpha Z)+\frac{1}{Z^2}B_2(\alpha Z)+\ldots\right].
\end{equation}
The coefficients $B_i$ are expanded in the parameter $\alpha Z$:
\begin{equation}
B_i(\alpha Z) = b_i^{(0)} + (\alpha Z)^2 b_i^{(2)} + (\alpha Z)^4 b_i^{(4)} + \cdots .
\end{equation}
We determine the coefficients $b_k^{(i)}$ in the Coulomb potential and various screening potentials from full numerical calculations of $\Delta g_{\text{int}}$ up to the fifth and third orders respectively. The calculations are based on the dual-kinetic-balance method [13] with a finite basis set composed of B-splines. Corrections due to the interelectronic interaction in the Breit approximation are expanded in powers of $\alpha Z$ for the ground and excited $(1s)^2 2p_{1/2}$ and $(1s)^2 2p_{3/2}$ states. The combination of our results with high precision non-relativistic calculations will enhance the accuracy of theoretical predictions.
Häffner H. $\textit{et al.}$, High-Accuracy Measurement of the Magnetic Moment Anomaly of the Electron Bound in Hydrogenlike Carbon, Phys. Rev. Lett. $\textbf{85}$, 5308 (2000).
Sturm S. $\textit{et al.}$, $g$ factor measurements of hydrogenlike $^{20}$Si$^{13+}$ as a challenge to QED calculations, Phys. Rev. A $\textbf{87}$, 030501 (2013).
Sturm S. $\textit{et al.}$, $g$ Factor of Hydrogenlike $^{20}$Si$^{13+}$, Phys. Rev. Lett. $\textbf{107}$, 023002 (2011).
Köhler F. $\textit{et al.}$, Isotope dependence of the Zeeman effect in lithium-like calcium, Nat. Commun. $\textbf{7}$, 10246 (2016).
Wagner A. $\textit{et al.}$, $g$ factor of lithiumlike silicon $^{20}$Si$^{13+}$, Phys. Rev. Lett. $\textbf{110}$, 033003 (2013).
Arapoglou I. $\textit{et al.}$, The $g$ factor of Boronlike Argon $^{40}$Ar$^{13+}$, Phys. Rev. Lett. $\textbf{122}$, 253001 (2019).
Glazov D. A. $\textit{et al.}$, $g$ Factor of Lithiumlike Silicon: New Challenge to Bound-State QED, Phys. Rev. Lett. $\textbf{123}$, 173001 (2019).
Sturm S. $\textit{et al.}$, High-precision measurement of the atomic mass of the electron, Nature $\textbf{506}$, 467 (2014).
Tiesinga E. $\textit{et al.}$, CODATA recommended values of the fundamental physical constants: 2018, Rev. Mod. Phys. $\textbf{93}$, 025010 (2021).
Shabaev V. M. $\textit{et al.}$, $g$-Factor of Heavy Ions: A New Access to the Fine Structure Constant, Phys. Rev. Lett. $\textbf{96}$, 253002 (2006).
Yerokhin V. A. $\textit{et al.}$, $g$ Factor of Light Ions for an Improved Determination of the Fine-Structure Constant, Phys. Rev. Lett. $\textbf{116}$, 100801 (2016).
Debierre V. $\textit{et al.}$, Testing standard-model extensions with isotope shifts in few-electron ions, Phys. Rev. A $\textbf{106}$, 062801 (2022).
Shabaev V. M. $\textit{et al.}$, Dual Kinetic Balance Approach to Basis-Set Expansions for the Dirac Equation, Phys. Rev. Lett. $\textbf{93}$, 130405 (2004).