Speaker
Description
emphasized textThe differential cross sections (DCs) of theneutron transfer $^{16}$O(d,p)$^{17}$O reaction leading to the ground and first excited states of the $^{17}$O nucleus were measured at deuteron energies of 36 MeV and they used to extract the spectroscopic factors for the $^{16}$O+n→$^{17}$O vertex[1]. In the present work, the analysis of the experimental DCs of the above mentioned reaction has been performed within the modified distorted wave Born approximation (MDWBA) [2] to obtain the “indirectly determined” values of the asymptotic normalization coefficients for the $^{16}$O+n→$^{17}O_{g.s.}$ and $^{16}$O+n→$^{17}$O (0.87 MeV) vertexes. To determine the absolute values of the ANCs in $^{17}$O nucleus, the ANC forthe d→p+n vertex was taken from the value of the nuclear vertex constant, $G^2$=0.43±0.01 fm, which extracted in Ref. [3]. All calculations were performed using the DWUCK5 code [4].
It was shown that the neutron transfer $^{16}$O(d,p)$^{17}$O reaction at the projectile energyof 36MeV was peripheral and the weighted mean value of the extracted ANCs were found to be $C^2_{{16}_{O n}}$=0.855±0.068 $fm^{-1}$ for the $^{16}$O+n→$^{17}O_{g.s.}$ vertex and $C^2_{{16}_{O n}}$=10.765±0.345 $fm^{-1}$ for the $^{16}$O+n→$^{17}$O(0.87 MeV) vertex. The different parameters of the optical potential also were used in the calculation for estimation of the values of ANCs for the $^{16}$O+n→$^{17}O_{g.s.}$ vertex and the $^{16}$O+n→$^{17}$O (0.87 MeV) vertex and their uncertainties.
The weighted mean values of the extracted asymptotic normalization coefficients are used for the calculation of the astrophysical S-factors of the $^{16}$O(n,γ)$^{17}$O reaction at low energies. The work is in progress now.
References
1. M.D. Cooper, W.F. Hornyak and P.G. Roos., Nucl. Phys. A218 (1974) 249-273.
2. A.M.Mukhamedzhanov et al., Phys. Rev. C 56 (1997) p. 3.
3. L.D.Blokhintsevet al., Fiz. Elem.Chast. Atom. Yad. 8 (1977) p. 6.
4. P.D.Kunz, Computer code DWUCK5.http://spot.colorado.edu/kunz/DWBA.html .
Section | Experimental and theoretical studies of nuclear reactions |
---|