Speaker
Description
Любое разложение квантовой системы на подсистемы подразумевает представление ее (глобального) гильбертова пространства в виде тензорного произведения (локальных) гильбертовых пространств подсистем. Это предполагает, что размерность глобального гильбертова пространства можно разложить в произведение (взаимно простых) локальных размерностей.
Можно показать, что в стандартной квантовой механике для данной факторизации размерности глобального гильбертова пространства все разложения, лежащие на орбите общей унитарной группы, действующей в глобальном пространстве, эквивалентны.
Аргументы конструктивности приводят к выводу, что естественной группой эквивалентности разложения является прямое произведение групп Клиффорда - конечных групп, важных в квантовой информатике, - действующих в локальных гильбертовых пространствах.
Китайская теорема об остатках обеспечивает связь между квантовыми числами системы и квантовыми числами ее подсистем.