Potential of Neural Networks for Air Quality Sensor Data Processing and Analysis

6 Jul 2021, 14:30
15m
403 or Online - https://jinr.webex.com/jinr/j.php?MTID=mf93df38c8fbed9d0bbaae27765fc1b0f

403 or Online - https://jinr.webex.com/jinr/j.php?MTID=mf93df38c8fbed9d0bbaae27765fc1b0f

Sectional reports 10. Distributed computing, HPC and ML for solving applied tasks Distributed computing, HPC and ML for solving applied tasks

Speaker

Jan Bitta (VSB-TU Ostrava)

Description

Air quality sensors represent an emerging technology for air monitoring quality. Their main advantage is that they are significantly cheaper monitoring devices compared to standard monitoring equipment. Low-cost, mass-produced sensors have a potential to form much denser monitoring networks and provide more detailed information on air pollution distribution. The drawback of sensor air pollution monitoring lies in the lower quality of measurements than that of standard monitoring equipment. It is known that the quality of air pollution sensor measurements is negatively influenced by meteorological factors, such as temperature or humidity. Neural networks are a potentially valuable technique for processing monitoring data to transform sensor measurements, complemented with meteorological data, into more accurate estimations of pollutant concentrations. The second possible use of neural networks with sensor data is their application as a prediction and analysis tool.

Primary authors

Presentation materials

There are no materials yet.