Speaker
Ms
Milena Veneva
(JINR)
Description
A class of models of heat transfer processes in a multilayer domain was considered. The governing equation (GE) is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones were applied. The aim of this research was to build a finite difference scheme on an uneven mesh with a second-order approximation in some norm in the case of a piecewise constant spatial step. This discretization leads to a pentadiagonal (PD) system of linear equations with a matrix which is neither diagonally dominant, nor positive definite. A tridiagonal (TD) system was obtained, using Gaussian elimination. Two different methods for solving the two linear systems were developed – diagonal dominantization and symbolic algorithms.
Primary authors
Mr
Alexander Ayriyan
(Laboratory of Information Technologies, JINR)
Ms
Milena Veneva
(JINR)